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Abstract: 

                     This study presents a novel approach to achieve complete system observability 

by optimizing the placement of Phasor Measuring Units (PMUs), reducing the risk of fault 

identification. The process considers both the redundancy and the cost of installation. The 

proposed solution methodology improves upon existing algorithms by utilizing the Butterfly 

Optimization Algorithm (BOA), which identifies optimal PMU locations. Resilient fault 

detection techniques are employed to detect and mitigate disruptions in the power grid 

swiftly. Addressing transmission line faults, the research integrates a Deep Learning 

Network (DLN) to enhance the state estimation process during fault conditions. Simulations 

of fault transients, including LG (Line-to-Ground), LLG (Line-to-Line-to-Ground), and LL 

(Line-to-Line) faults, are conducted using MATLAB Software. The Neural Network (NN) 

response is evaluated based on two key hyperparameters—the number of hidden layers and 

the number of neurons utilised for feature extraction. Results demonstrate the superiority of 

the proposed method, with approximately 85% fault detection accuracy and a system 

performance metric of 90%. Additionally, the processing time required for training the 

network is small. 
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1. Introduction 

1.1 Distribution Power System Faults 

There are numerous encounters observed when the phasor measurement units (PMUs) 

are located for full network observability. Most of the researchers perceived communication 

facilities as the most noteworthy feature that affects the PMU procurement and installation 

costs. The second most substantial issue is the security requirements where the users built an 

either mission‐critical or mission-support system that determines voltage stability, the major 

delinquent over earlier ages that regulates the maximum load ability limit of the buses. If the 

PMUs are placed on the critical buses, then the Fast Voltage Stability Index (FVSI) is 

minimized, and the Weak Bus Observability Index (WBOI) is maximized. Even though the 

placement of PMUs offers complete network observability, the cost of placing the PMUs 

should be condensed because the typical overall cost of PMUs1 ranges from $14000 to $30000 

In most developing countries, if the cost of PMU placements at a particular location is high, 

then it is not conceivable to place the PMUs in the chosen location. Therefore, the cost of 

placement of PMUs should be less than the overall cost of the connected synchrophasor system 

outlays 

The precise location of faults is determined using techniques such as fault current 

analysis, time-domain reflectometry, and travelling wave analysis. In this study, as in Fig 1 we 

use Optimal PMU Placement (OPP) alongside the Butterfly Optimization Algorithm. By 

incorporating Machine Learning (ML), the fault identification process is further enhanced, 

providing improved security and reliability in power system management. 

 

1.2 Challenges in Present Distribution System State Estimation 

Monitoring multiple buses simultaneously in an active grid is essential for preventing 

faults. This can be achieved by placing PMUs in optimal locations and minimizing the System 

Maximizing Redundancy Index (SMRI). While existing fault detection systems simulate and 

train based on specific scenarios, advanced deep learning and machine learning algorithms 

offer better detection capabilities. By leveraging these technologies, the grid can be better 

understood, providing enhanced control and fault prevention. 
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Fig. 1 Sustainable PMU placements for smart grid development 

1.3 Research Review on Distribution System State Estimation 

This study begins by examining the shortcomings of the traditional Fault Data Self 

Synchronization (FDSS) algorithm, which estimates the initial delay difference at both 

terminals using zero-crossing time and current polarity. To improve the speed and accuracy of 

fault detection, we propose a centralized backup protection system combining delta algorithms 

with the least-squares method. PMUs and micro-PMUs are emerging technologies that enhance 

real-time grid monitoring, fault detection, and overall grid safety. Ongoing research focuses on 

integrating micro-PMUs with control systems for more efficient fault detection. 

The research also explores PMU-based Distributed State Estimation (DSE) methods, 

which introduce equality constraints to reduce numerical instability and improve computational 

efficiency. By integrating machine learning models and advanced optimization techniques, the 

study seeks to refine PMU placements and enhance the accuracy of fault detection, which has 

been shown in Fig 2. 
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Table 1 Consolidated Research Review 

Ref Year Author Algorithm / Approaches Objectives 

Min OPP Resilience & 

Fault 

Detection 

Artificial 

Neural Network 

OPP &ML-

based Fault 

detection 

3 2023 Andic, C., et al Crow Search Algorithm Yes No No Absence of 

Prior Reports 8 2021 Chavez, J. J., et al Fault Locator for Transmission 

Backup Protection 

No Yes No 

12 2021 F. G. Duque, et al Modified Monkey Search 

Algorithm 

Yes No No 

13 2023 G. S. Dua, et al Fault Detection Technique for 

Distribution Networks 

No Yes  

18 2023 M. Mukherjee and B. K. S. 

Roy, 

Binary Carnivorous Plant 

Algorithm 

Yes No No 

22 2023 Pattanaik, V et., al. Artificial Bee Colony 

Algorithm 

Yes No No 

23 2006 Peng, J et., al. Tabu Search Algorithm Yes No No 

24 2023 Q. -H. Ngo, et al Graph Neural Networks No No Yes 

27 2023 Rezapour, H., et al Artificial Intelligence-Based 

Fault Location Methods 

       No Yes Yes 

28 2021 Sonal, & Ghosh, D. Resilience Assessment of a 

Distribution System 

       Yes Yes No 

29 2023 Tshenyego, O et., al. Binary Firefly Algorithm       Yes  No No 

30 2017 V. Basetti and A. K. 

Chandel, 

Taguchi Binary Bat Algorithm Yes No No  

32 2023 Y Raghuvamsi, Kiran 

Teeparthi, A 

State Estimation Uncertainty 

Issues Using Deep Learning 

No No Yes  

 2023 Puvikko et al Butterfly Optimization 

Algorithm 

Yes Yes Yes Yes 

 

In addition with Table 1, various metaheuristic algorithms have been applied to address the 

challenge of optimizing PMU (Phasor Measurement Unit) placement. These include the Crow Search 

Algorithm [3], Modified Monkey Search [12], Binary Carnivorous Plant Search Algorithm [18], 

Artificial Bee Colony Algorithm [22], Tabu Search Algorithm [23], Binary Firefly Algorithm [31], and 

Taguchi Binary Bat Algorithm [32]. These algorithms are employed to find the best configuration for 

PMU placement, optimizing the monitoring of power systems. 
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1.4 Research Hiatus 

Despite advancements in power system monitoring, achieving optimal power system 

resilience remains a significant challenge, particularly in radial networks. The methods 

discussed in this paper address critical limitations in current fault location and PMU placement 

techniques. Traditional fault detection approaches often fail to fully influence the potential of 

deep learning. This research aims to fill these gaps by optimizing PMU placement and 

enhancing fault detection using machine learning models. 

 

1.5 Problem Statement 

This research addresses the gaps in current fault detection methods by providing a 

comprehensive framework for improving power system resilience. By using deep learning 

methods and optimizing PMU placement, authors are targeting to improve fault detection and 

system monitoring, particularly in radial networks. 

 

1.6 Motivation and Objectives 

The primary objectives of this study are: 

• To determine optimal PMU placements in radial networks for improved observability 

and control. 

• To enhance machine learning models for accurately locating and classifying faults. 

• To ensure quick fault detection and system recovery through deep learning models, 

minimizing downtime. 

• Ultimately, to strengthens the power system's resilience, enabling it to withstand and 

recover from faults. 

 

1.7 Organization of the Work 

 The organization of this paper is carried out as follows. Section 2 describes the recent 

research works related to the OPP and metaheuristics. The proposed methodology is explained 

in Section 3 as a BOA. Section 4 is enclosed with a performance analysis of the proposed 

system 4 and the overall conclusion of the proposed algorithm is given in Section 5 
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Fig 2. Flow Chart: Functioning of the Current Method 

 

2. Formulation of the Distribution System State Estimation 

In an N-bus power system configuration equipped with m voltage and current phasor 

measurements, the relationship between these measurements and the system state vector can 

be expressed through a nonlinear matrix equation. This equation reflects the interaction 

between the measured data and the internal variables of the system. 
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The following nonlinear equation describes the relationship: 

δ𝑍 =
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= ℎ(ẍ) + 𝑒𝑟 (1) 

where h represents the nonlinear measurement function, x denotes the state vector, and r 

represents measurement errors. When the system is fully observable, the rank of the Jacobian 

matrix H matches the size of the state vector. In this context, the Weighted Least Squares 

(WLS) state estimation method is commonly employed to minimize the weighted sum of the 

squares of the measurement residuals. Each residual is weighted according to its associated 

error covariance. 

The WLS objective function is expressed as: 

 

𝐽(𝑥) =  (δ𝑍 − h(ẍ))𝑇𝑅−1(δ𝑍 − h(ẍ)) (2) 

The Gain matrix is constructed by combining the Jacobian matrix (H) and the error covariance matrix 

(R) measurement. The covariance matrix is presumed to have a diagonal structure, with the variances 

of measurements occupying its diagonal entries. This results in the formation of the Gain Matrix as 

follows: 

                                                                                       𝐽(𝑥𝑘) = 𝐻𝑇𝑅−1                              (3) 

Its Where H = 
𝜕հ(ẍ)

𝜕𝑥
 = 

[
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⋮ ⋱ ⋮
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𝜕𝑥𝑛 ]
 
 
 

is the Jacobian matrix, and R is the diagonal matrix with a 

value ϵi
2, where [

ϵi
2 ⋯ .
⋮ ⋱ ⋮
. ⋯ ϵm

2
] is the standard deviation of the error associated with ith  measurement. m 

is the number of measurements, and n is the number of state variables. 
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2.1 Objective Function-1: Optimal PMU Placement 

The objective of the OPP problem is to determine the minimum number of PMUs 

needed to achieve full system observability. This objective can be formulated as a nonlinear 

optimization problem within the WLS framework: 

 𝑊𝐿𝑆𝑥 =  𝑚𝑖𝑛 ∑ 𝑊𝑖
𝑁
𝑖=1 ∗𝑋𝑖

2  (4) 

subject to the constraint that each bus is observed by at least one PMU: 

∑ 𝑋i

N

i=1

≥ 1                            (5)                           

where Pi is a binary variable that indicates whether a PMU is placed at bus i (1 if placed, 

0 otherwise), and ci represents the cost associated with placing a PMU at bus i. The constraint 

ensures that each bus is observed by at least one PMU, either directly or indirectly. 

 

2.2 Objective Function-2: SMRI Optimization 

In this scenario, the SMRI is maximized to enhance system observability. SMRI is 

defined as the number of times each bus is observed, either directly or indirectly, through the 

placement of PMUs. It is mathematically represented as: 

𝑆𝑀𝑅𝐼𝑚𝑎𝑥 = 
1

𝑛
∑𝑅𝑗

𝑘

𝑁

𝑗=1

               (6)      

where n is the number of buses in the system, and Oj represents the number of times bus j is 

observed by the installed PMUs. The goal is to maximize the SMRI while minimizing the 

number of PMUs used. 

 

3. Optimal PMU Locations for Distribution System State Estimation  

3.1 Why Optimization? 

The placement of PMUs in the distribution system is a complex, non-linear problem.  a 

major factor in placing PMUs in optimal locations. Several algorithms have been proposed to 

address this challenge in the literature which have low time response, as an attempt we utilize 
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BOA which emerging as a highly effective method for determining optimal PMU locations. 

The BOA mimics the natural foraging behaviour of butterflies, using both global and local 

search strategies to find the best locations for PMU installation. 

The BOA's strengths lie in its adaptability to various optimization problems, ease of 

implementation, and scalability. These attributes make it well-suited for the task of optimizing 

PMU placement, ensuring that the system remains fully observable under different operating 

conditions. 

 

3.2 Implementation of BOA for PMU Locations 

The BOA is based on the natural movements of butterflies as in Fig 3, which rely on 

sensory receptors to detect food sources. The global search process involves butterflies moving 

towards the best-known location, while the local search process involves movement based on 

the fragrances released by nearby butterflies. 

 

3.3 Optimal PMU Locations using BOA 

In the context of PMU placement, the global search process represents the exploration 

of potential PMU locations across the entire system, while the local search focuses on 

refining the placement of PMUs in specific regions. 

 

 The BOA's optimization process includes the following steps: 

STEP 1: Initialization of the algorithm and problem parameters. 

STEP 2: Initialization of the population of butterflies (PMU placements). 

STEP 3: Calculation of fitness values (system observability). 

STEP 4: Updating the population based on global and local search strategies. 

STEP 5: Checking for convergence and terminating the process when the optimal 

solution is found 
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. 

Fig.3 Flowchart of the general BOA steps 
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4. Fault Identification and Classification 

The BOA has proven to be an efficient tool for optimizing PMU placement, yielding a 

high SMRI in various test scenarios, including the IEEE 33-bus system. However, to maximize 

the benefits of optimal PMU placement, it is essential to employ a reliable learning algorithm 

for fault identification, as grid conditions are constantly evolving. ML algorithms, particularly 

Artificial Neural Networks (ANN), offer the flexibility and adaptability necessary for efficient 

fault detection. 

 

4.1 Learning Algorithm 

In this work, the fault identification process is enhanced using machine learning 

algorithms, which operate through iterative trial-and-error approaches to achieve high 

efficiency. Given that the system is constantly subject to changes and fault conditions, the 

adaptability of machine learning makes it a suitable choice for improving fault detection 

accuracy. 

The training process for machine learning models is crucial. In our case, repeated 

training with variations in the dataset allows the model to generalize better as in Fig.4, reaching 

an accuracy of around 85%. Without an adaptable algorithm, the improvements made during 

the OPP process would not be fully utilized. As system faults vary over time, it is essential to 

have a machine learning algorithm capable of adapting to these dynamic changes, ensuring 

both accuracy and speed in fault detection. 

 

4.2 Implementation 

The implementation of the learning algorithm for fault location is closely tied to the 

quality and size of the dataset, as well as the choice of neural network architecture. The steps 

involved in implementing the machine learning approach include: 

Data Collection and Preparation: Data is collected from transmission lines, including 

fault locations and relevant features such as voltage, current, and power measurements. The 

dataset is labelled, and data is divided into training, validation, and test sets. 
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Data Pre-processing: Input and output data are normalized to bring them to a similar 

scale. Fault location labels are encoded, and the data is prepared for the neural network model. 

Neural Network Architecture: The chosen architecture is a feed-forward neural 

network, which connects input features to output classifications through hidden layers. The 

number of hidden layers and neurons in each layer is determined based on the complexity of 

the problem. 

Training: The neural network is trained using the Bayesian regularization algorithm, 

implemented via the Levenberg-Marquardt optimization method. This method adjusts the 

weights and biases of the network to minimize error. Training is terminated once the maximum 

number of epochs is reached or the desired level of performance is achieved. 

 

Fig.4 Machine Learning Flowchart 
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4.3 Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt algorithm is designed to minimize the sum of squared 

residuals in nonlinear least-squares problems. The objective function is formulated as: 

Minimize  ∑ [f (x; p) −y] ^2 

where  

• f (x; p) represents the model function with parameters p and input x, and  

• y represents the observed data.  

The algorithm combines aspects of gradient descent and the Gauss-Newton method, 

adjusting parameters iteratively to reach the optimal solution. 

In our system, the algorithm modifies the weights and biases of the neural network based 

on the following update rule: 

jj = jX * jX 

je = jX * E 

dX = -(jj+I*mu) \ je 

where J is the Jacobian matrix, I is the identity matrix, and e is the error vector. The adaptive 

variable μ ensures stability and prevents the algorithm from getting stuck in local minima. 

Training is completed when one of the following conditions is met: 

• Maximum training time is reached. 

• The desired performance level is achieved. 

• The performance gradient becomes too small. 

 

4.4 ML Utilization over the OPP  

Fig.5 Illustrates the single-line circuit diagram of the IEEE 33-bus system, which includes bus 

classification into three zones and the corresponding locations of PMU placement.  
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Fig 5. Bus classification scheme 

Selected PMU measurements for fault identification include voltage, current, angle, and power 

information. These variables are stored in a matrix structure to mitigate storage and memory issues 

associated with ANN. The PMU reading selection is as follows. 

• Zone 1 controller ANN1 - (PMUmat1 PMU2 PMU 3 ...... PMU10 ) -  

• Zone 2 controller ANN2 - (PMUmat1 PMU2 PMU 3 ...... PMU10 ) –  

• Zone 3 Controller ANN3- (PMU 3 ...... PMU10 ) 

Table 2 indicates that to monitor the entire system effectively, and Table 3 for Comparison of 

Optimal PMU Spots and Redundancy Evaluation ,where 10 PMUs are necessary. Fig. 6 illustrates the 

implementation of the PMU model for executing fault detection within the network. 

Short circuit faults are a primary cause of power outages in electrical networks, typically 

classified into four main types: LG, LL, LLG, and LLL, primarily analyzed at the transmission level. 

However, at the distribution level, these fault types result in ten different phase combinations due to 

their imbalance and asymmetry. In the proposed system, LG and LLG faults are analyzed, following 

the same procedure for other types of faults. Consequently, the case studies do not include faults other 

than LG and LLG. Faults are generated at each bus and a MATLAB model is employed to compute the 

voltage and magnitude for each bus. The data collected from all buses is then used as the ANN input. 

The Fig.7 illustrates a simulation of a fault occurring at bus 1. This means that in the depicted 

visual diagram, a fault scenario, such as a short circuit or another type of electrical fault, is simulated at 
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the specific location denoted as "bus 1." The purpose of the simulation is to analyze the impact of the 

fault on the electrical system and its components at this particular bus within the more extensive power 

network.  

The ANN is trained using input data collected from the PMUs after the fault analysis. When a 

fault occurs in the system, the ANN promptly compares the received input data from the PMUs with 

the trained data. This comparison allows the ANN to accurately identify the fault type in the system and 

pinpoint the fault's location. This process involves the ANN recognizing deviations in the 

measurement’s indicative of a fault. By analysing these deviations, the ANN can classify the fault type 

(e.g., LG, LLG) and determine the specific location within the system where the fault has occurred. Fig. 

8 shows the PMU voltage and currents during the flexibility. 

5. Simulation Findings, Analysis, and Discussion 

To validate the proposed model, a variety of systems, including conventional IEEE test 

cases, were analyzed. All simulations were performed using MATLAB, and fault identification 

was tested across multiple test systems, including the IEEE 33-bus system. 

Test Case 1: IEEE RBTS -2 

Test Case 2: IEEE 15 Bus system 

Test Case 3: IEEE 33 Bus system 

Test Case 4: IEEE 69 Bus system 

Test Case 5: IEEE 85 Bus system 

 

5.1 Sensor (PMU) Location Strategy for Distributed State Estimation 

The BOA successfully identified the optimal PMU locations for several IEEE test 

systems, ensuring maximum system observability. The results, summarized in Table 2, show 

the efficiency of the BOA in minimizing the number of PMUs required for complete system 

monitoring. For example, nine PMUs were sufficient to monitor the entire IEEE RBTS-2 Test 

System, with optimal placement at buses 1, 4, 7, 10, 13, 16, 19, 21, and 23. 
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Table 2 Optimal PMU Spots Ensuring Maximum System Observability through BOA Algorithm 

Test System PMUs PMU Location SMRI 
Latency 

in Sec 

IEEE 15 5 2, 4, 9, 11, 13 20 0.023 

IEEE RBTS -

2 
9 1,4,7,10,13,16,19,21,23 24 0.050 

IEEE 33 10 2, 5, 8, 11, 14, 17, 21, 24, 27, 30 34 0.071 

IEEE 69 23 
1,3,5,8,12,15,18,21,24,27,30,33,38,41,44,48,50,52,

55,58,61,64,69 
81 0.144 

IEEE 85 32 

2,4,6,8,10,12,13,15,17,19,22,24,26,27,29,32,35,37,4

1,45, 

47,50,53,55,58,62,64,67,70,73, 81,84 

102 0.196 

 

 

 

 

 

 

 

Table 3. Comparison of Optimal PMU Spots and Redundancy Evaluation 

Methods 

IEEE 15 Bus IEEE 33 Bus IEEE 69 Bus IEEE 85 Bus 

PMU SMRI PMU SMRI PMU SMRI PMU SMRI 

Proposed 

Method 
5 20 10 34 23 81 32 102 

AGA [23] - - 11 33 26 84 - - 

Greedy [24] 7 22 14 38 27 85 - - 

CES [25] - - 11 33 25 82 - - 

NSGA [26] 5 19 11 32 23 80 - - 

MST [10] 5 19 11 32 23 80 - - 

ACO [2] 6 21 12 36 24 82 - - 
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5.2 Fault Detection Using Machine Learning in Distributed State Estimation 

The machine learning model was trained using the MATLAB Simulink toolbox to 

detect faults using input data from PMUs. The model was tested on the IEEE 33-bus system, 

where short-circuit faults, including LG and LLG faults, were simulated. The ANN was able 

to accurately classify and locate faults in the system by analysing deviations in voltage and 

current measurements from the PMUs. 

 

Fig.6. Implementation of PMU unit in MATLAB 

Fig 7. MATLAB model for Fault simulation in BUS  
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Fig.8.PMU Voltage and Current for LG Fault 

 

 

Fig. 9 Machine Learning Model's Training Performance 
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Fig.10. Error histogram with 20 bins 

Fig.11. Machine Learning Model's Performance on a Validation Dataset 

The simulation results for fault detection are depicted in Fig. 6 through Fig.11. For 

instance, Fig.8 illustrates the PMU voltage and current measurements during an LG fault. The 

machine learning model demonstrated a high level of accuracy in identifying faults, with 

training performance reaching a peak accuracy of 99.8% after 182 epochs, as shown in Fig. 9. 

Furthermore, Fig.10’s error histogram confirms that most predictions had errors close to zero, 

indicating strong model performance.Fig.11 shows Machine Learning Model’s Performance 

on a Validation Dataset. 
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5.3. Observations from the Results 

The following key observations can be drawn from the simulation results: 

• The use of the BOA significantly improved efficiency over other optimization 

methods. This resulted in better placement of PMUs for dynamic state 

estimation modules. 

• The SMRI calculated for the IEEE 33-bus system showed higher efficiency 

compared to other methods, primarily due to the superior optimization 

capabilities of BOA. 

• Repeated training of the ML model, based on dynamic situations, improved 

fault detection accuracy. This adaptability allowed the system to respond to a 

variety of real-world fault conditions more effectively than single, simulated 

processes. 

• Machine learning models, particularly neural networks, proved to be an open-

source and flexible solution that can be continually refined and adapted over 

time for better performance. 

• The graphical results demonstrated that the training and performance of the 

machine learning model remained consistent, even in dynamic estimation 

systems. This reliability makes it applicable to real-world grid management 

scenarios. 

• From a practical standpoint, this research offers a solution that can be directly 

implemented in distribution systems. The proposed method, with its integrated 

use of BOA for PMU placement and machine learning for fault detection, helps 

enhance grid stability by predicting and preventing faults. 

 

6. Conclusion 

The integration of deep learning techniques for fault detection and PMU placement 

optimization in radial power distribution networks significantly enhances system resilience. In 

this study, we leveraged advanced artificial intelligence methods to improve two critical 

aspects of power system management: fault detection and real-time monitoring. 
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Through the use of the BOA, we were able to determine optimal PMU placements, 

maximizing system observability while minimizing the number of required units. At the same 

time, the machine learning models, particularly neural networks, demonstrated high efficiency 

in detecting and classifying faults with an accuracy rate of around 85%. The use of MATLAB-

based simulations for fault conditions, such as LG and LLG faults, provided a robust validation 

framework for the proposed approach. 

 

By implementing these techniques, power systems can detect and locate faults more 

accurately and in real-time. This significantly reduces system downtime and enhances the 

overall resilience of the grid, ensuring that it can quickly recover from disturbances while 

maintaining continuous operation. 

 

6.1 Core Takeaways 

Optimized PMU Placement: The use of BOA enables the strategic placement of PMUs, 

minimizing cost and maximizing system observability. Enhanced Fault Detection: Deep 

learning models, such as neural networks, can identify and classify faults with high accuracy, 

improving fault management in radial power networks. System Resilience: The proposed 

framework enhances the power system’s ability to withstand and recover from faults, reducing 

disruptions to end-users and increasing grid stability. 

 

Societal Implications and Contribution 

The research findings contribute directly to the practical implementation of fault 

detection and monitoring systems within distribution grids. The improvements in system 

observability and fault detection efficiency pave the way for more reliable electricity networks, 

which is crucial in reducing energy poverty and ensuring sustainable energy supplies. The 

application of green energy, supported by real-time monitoring with PMUs, also has the 

potential to significantly reduce emissions and promote the use of renewable resources. 
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