
Skin Cancer Detection Using CNN

Dr. Ch Raja1, Dr. Shaik Irfan Babu2

1Associate Professor, Dept. of ECE, Mahatma Gandhi Institute of Technology, Hyderabad, Telangana, India.

2Assistant Professor, Dept. of CSEET, Mahatma Gandhi Institute of Technology, Hyderabad, Telangana, India.

ABSTRACT

 This paper aims to detect and classify skin cancer using state-of-the-art machine learning techniques.

The HAM10000 (Human Against Machine) dataset, which contains 10,015 labelled images of skin

lesions, was released for academic research and has since been widely used to showcase various

machine learning approaches. Neural networks, inspired by the human brain, have become

increasingly popular across numerous domains. A specialized variant known as Convolutional Neural

Networks (CNNs) has proven particularly effective for image processing tasks. Standard architectures

such as VGG16, ResNet50, GoogLeNet, and LeNet are recognized for their high performance and

have consistently ranked among the top models in the annual ImageNet competition. Although one of

these champion models could have been applied to this classification problem, the dataset used is

highly imbalanced and skewed. Without appropriate data representation, even the most advanced

models struggle to learn the distinguishing features between classes effectively. To address this

challenge, several experiments were conducted to enhance the accuracy of the classification results.

 Keywords: Skin Cancer, HAM10000,Convolutional Neural Network (CNN), Imbalanced Dataset,

VGG16, ResNet50, GoogLeNet, LeNet

INTRODUCTION

Skin cancers are malignant growths that originate from the skin's layers. These cancers result from the

uncontrolled proliferation of abnormal skin cells, which can invade surrounding tissues and

metastasize to other parts of the body. Over 90% of skin cancer cases are attributed to prolonged

exposure to ultraviolet (UV) radiation from the Sun. The depletion of the ozone layer and the growing

popularity of artificial tanning methods, such as tanning beds, have significantly increased UV

exposure, thereby elevating the risk of developing skin cancer. Accurate and early diagnosis of skin

cancer is crucial for effective treatment and improved survival rates. Traditionally, diagnosis relies

heavily on dermatologists' expertise, which may not always be readily accessible, particularly in

under-resourced regions. Therefore, an automated system that can assist in the early detection and

classification of skin cancer types would be highly valuable. This technique is centred on developing

a machine learning-based classifier capable of identifying and distinguishing between various types of

skin cancer from dermatoscopic images. By leveraging deep learning techniques, particularly

Convolutional Neural Networks (CNNs), this project proposes a robust classification framework. Two

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 63

different deep learning models have been constructed and evaluated, each designed to learn and

extract distinctive features from the images to accurately predict cancer types. The comparative

analysis of these models highlights their individual strengths, limitations, and suitability for real-

world applications. With access to a larger and more diverse dataset, the models can be further trained

and optimized to improve their performance, potentially achieving state-of-the-art accuracy. Such

advancements would have a transformative impact on the field of dermatology and oncology, offering

scalable solutions for early detection and diagnosis, ultimately saving lives and benefiting global

healthcare. It includes a comparative discussion of popular deep learning models and their

effectiveness in addressing similar challenges. Following this, the core chapters delve into the

technical aspects of the project—covering data pre-processing, model architecture, training

procedures, performance evaluation, and observed outcomes.

LITERATURE SURVEY

Alex Krizhevsky ,et.al., “ImageNet Classification with Deep Convolutional Neural Networks. Neural

Information Processing Systems”, has explored the dataset in a beautiful manner, entirely wholesome

for the purpose of classification. Exploration of the dataset is a prerequisite for machine learning. We

must ensure that the dataset is balanced and processed in order to effectively produce a working

model. Due to limitations of processing power, the size of the image has to be reduced. This is exactly

what Alex did; he resized every image into 100x75 pixels, allowing the kaggle processors to work

better and product faster results. The Machine learning model created in this case is a classic deep

convolution neural network. This usually involves a series of convolution layers with tapering kernel

size and increasing channel size, intercepted by a dropout layer every now and then. The author has

rightly relied upon Categorical Cross Entropy, which is required for multi class classification models,

also called Softmax loss. It is Softmax activation plus a Cross-Entropy loss. If we use this loss, we

will train a CNN to output a probability over the classes for each image. It is used for multi-class

classification. A slightly preceding model to the adam optimizer is the Adadelta, which is Adaptive

Detla optimizer. This is of great importance for learning rate annealing, which requires special

heuristics to ensure rapid and efficient convergence of the convolution network model.

Detection and analysis of Skin cancer:

Figure1 comprises of all the steps taken in order to create a trained machine learning model which

classifies skin cancer into 7 different types. The subsequent sections of this chapter explain every step

in detail.

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 64

Figure1: Flow chart to create the model

Pre-processing and preparation of data

Preprocessing data enables the neural network to identify the significant features which is a rather

difficult task for a neural network on its own. Since, the following model classifies the skin cancer

solely based on the image of the kin lesion, the most popular form of preprocessing images is

normalizing the pixel values. It has been proven that normalizing the input increases the accuracy and

training speed of the model.

Normalization

For the dataset provided, two types of normalizations were used. Those are Min-Max normalization

and Z-score normalization. Out of these, the Z-score normalization has produced a significant

accuracy, unlike that of min-max normalization.

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 65

Z-Score normalization:

The primary advantage of using the Z-score normalization is the forced binding of the dataset to a

single distribution. Machine learning models find it hard to learn when the dataset consists of different

distributions, thus slowing down the learning process and the classification will lead to higher error

rates due to the non-familiarity of unseen data. Thus, constraining the data to a particular distribution

helps with improved accuracy. It is highly advised to create a preprocessing pipe line which performs

normalization. Figure 2. displays the difference between the normalized image and the image prior to

normalization. In this case, every channel (RGB) of the image has been normalized individually.

Figure2: Before and after Normalization

Splitting dataset into training and testing set

It’s a standard practice to split the available data into two sets, the training set and the validation set.

The primary purpose of machine learning is to identify the general patterns in the data in order to

predict or classify unseen data. Thus, we would like to test the performance of our model by running

on a validation set that validates the classification and produces an accuracy score. This is a very

important step as it contributes to detecting overfitting, a real programmer’s nightmare. Overfitting is

characterized by high accuracy of the model over the training set and lower accuracy over the

validation set. Overfitting occurs when the model is identifies patterns and features which are local to

the training set, rather than the general population as a whole. Remember, an overfitted model is

utterly useless and a massive waste of resources.

Residual Neural Network Model

The model generated for this task is a specific convolution neural network known as residual neural

networks. It is designed with the primary idea of keeping vanishing gradient at bay, which is an issue

that stalls the learning and makes all the resources spent fruitless.

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 66

This model has 4 different types of convolution layers, each varying in the number of filters and their

dimension.

The convolution layers are:

1. 64 channel, 3x3 kernel

2. 128 channel, 3x3 kernel

3. 256 channel, 3x3 kernel

4. 512 channel, 3x3 kernel

Structure of the Residual Neural network

Layer (type) Output Shape Parameter #

===

max_pooling2d_7 (MaxPooling2 (None, 18, 24, 64) 0

conv2d_169 (Conv2D) (None, 37, 49, 64) 1792

conv2d_170 (Conv2D) (None, 18, 24, 64) 36928

conv2d_171 (Conv2D) (None, 18, 24, 64) 36928

conv2d_172 (Conv2D) (None, 18, 24, 64) 36928

conv2d_173 (Conv2D) (None, 18, 24, 64) 36928

conv2d_174 (Conv2D) (None, 18, 24, 64) 36928

conv2d_175 (Conv2D) (None, 18, 24, 64) 36928

conv2d_176 (Conv2D) (None, 8, 11, 128) 73856

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 67

conv2d_177 (Conv2D) (None, 8, 11, 128) 147584

conv2d_178 (Conv2D) (None, 8, 11, 128) 147584

conv2d_179 (Conv2D) (None, 8, 11, 128) 147584

conv2d_180 (Conv2D) (None, 8, 11, 128) 147584

conv2d_181 (Conv2D) (None, 8, 11, 128) 147584

conv2d_182 (Conv2D) (None, 8, 11, 128) 147584

conv2d_183 (Conv2D) (None, 3, 5, 256) 295168

conv2d_184 (Conv2D) (None, 3, 5, 256) 590080

conv2d_185 (Conv2D) (None, 3, 5, 256) 590080

conv2d_186 (Conv2D) (None, 3, 5, 256) 590080

conv2d_187 (Conv2D) (None, 3, 5, 256) 590080

conv2d_188 (Conv2D) (None, 3, 5, 256) 590080

conv2d_189 (Conv2D) (None, 3, 5, 256) 590080

conv2d_190 (Conv2D) (None, 1, 2, 512) 1180160

conv2d_191 (Conv2D) (None, 1, 2, 512) 2359808

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 68

conv2d_192 (Conv2D) (None, 1, 2, 512) 2359808

conv2d_193 (Conv2D) (None, 1, 2, 512) 2359808

conv2d_194 (Conv2D) (None, 1, 2, 512) 2359808

conv2d_195 (Conv2D) (None, 1, 2, 512) 2359808

conv2d_196 (Conv2D) (None, 1, 2, 512) 2359808

flatten_7 (Flatten) (None, 1024) 0

dense_25 (Dense) (None, 1000) 1025000

dense_26 (Dense) (None, 500) 500500

dense_27 (Dense) (None, 250) 125250

dense_28 (Dense) (None, 4) 1004

The convolution layers are interceded with batch normalization layers in an attempt to reduce

covariate shift and improve training speed. Another alternative would have been to use dropout layers

instead of normalization layers, but they also contribute in avoiding the dreaded case of overfitting.

After every 4 sets of convolution layers, a convolution layer without the activation function is

provided so that the result produced can be added to the earlier result produced by the layer, preceding

the current layer by four layers. Finally, after the series of convolution layers, we add a flatten layer

which converts the 2D representation of the outputs from the convolution layer into a single

dimension output. The flatten layer allows, us to further connect several layers of dense feed-forward

layers, which eventually conclude with an output layer.

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 69

In this example, utilized a 3 layer deep feed-forwards which ends with an output layer with a Softmax

activation function. Our task being a multi classification task, cannot be expressed with sigmoid

function, instead we use the Softmax functions which is the generalized version of the sigmoid

function specifically meant for multi class classification. Sigmoid and Softmax can be alternatively

used for binary classification.

Optimizer

 Adaptive momentum (Adam optimizer) is the latest and most effective of the currently available

adaptive rate adjusting algorithms. It detects the change in momentum during back propagation,

allowing it to smartly adjust the decaying learning rate, to improve the convergence rate to optimal

solution. Since this task is a multi-classification problem, the loss function employed is categorical

cross entropy which is an extension to the binary cross entropy.

The training was performed with a batch size of 19 for 90 epochs. Several other batch sizes were tried

and tested in an attempt to find the proper value to avoid overfitting. The standard convention

identified is that, the batch size must be decreased to increase fitting and reduced to avoid overfitting.

Thus, by carefully adjusting the number of epochs and batch size, we can avoid the usage of a dropout

layer.

Accuracy and observations

Validation set for testing purpose wasn’t used to determine test metrics during training as it drastically

reduced the accuracy for the final result. Since image processing demands a massive dataset and

HAM10000 has certain classes barely exceeding 100 occurrence which inhibits the usage of

validation set approach. Fig 6.1 displays the graphical representation of Training Metrics for every

epoch.

Figure 3: Graphs displaying training accuracy and training loss for every epoch

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 70

As a validation set isn’t used for training, it is very easy for over fitting to occur. As can be seen in

this case, the training accuracy is a massive 99% as shown in Figure 3, however when the final model

was tested on the test set the accuracy was still a remarkable 76%. Perhaps, with further tuning we can

achieve a greater accuracy.

Figure 4: First epoch of training

Figure 5: Mid-training, notice the increment in accuracy

From Figure 4 and 5 notice how the accuracy increases over time with every epoch as the model

begins to learn.

Adaptive boosting model

An Adaboosted model is an ensemble technique which is widely relied upon when imbalanced data is

required to be classified. This type of model forces the individual models to specially focus and

identify the features of underrepresented classes. It is done by resampling a training set by favoring

misclassified examples. There are several other ensemble methods; however a variation of

Adaboosting is what stuck with me as I realized that other ensemble techniques are specifically used

for tree style model.

The traditional Adaboosting model was created for binary classification and libraries with code

already existed. Since, decision trees aren’t the best model for image classification, the code to

incorporate Convolution Neural Networks into Adaboosting, and thus we could call this a neural

ensemble technique.

In this paper, created a basic neural network whose instance will be repeatedly spawned and trained to

create the ensemble. Adaboosted technique makes use of 30 models trained over selected samples of

training data to learn specific features of the images.

Architecture of Base Model

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 71

This model has 3 different convolution layers, following the standard Alex net design. Didn’t require

much thought as this is a tried and tested model.

1) 32 channel with 3x3 filter

2) 64 channel with 3x3 filter

3) 128 channel with 3x3 filter

Structure of the Base neural network model

Layer (type) Output Shape Parameter #

===

conv2d_205 (Conv2D) (None, 73, 98, 64) 1792

batch_normalization_198 (Bat (None, 73, 98, 64) 256

conv2d_206 (Conv2D) (None, 36, 48, 128) 73856

batch_normalization_199 (Bat (None, 36, 48, 128) 512

conv2d_207 (Conv2D) (None, 17, 23, 256) 295168

batch_normalization_200 (Bat (None, 17, 23, 256) 1024

conv2d_208 (Conv2D) (None, 8, 11, 512) 1180160

batch_normalization_201 (Bat (None, 8, 11, 512) 2048

flatten_10 (Flatten) (None, 45056) 0

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 72

dense_35 (Dense) (None, 128) 5767296

dropout_10 (Dropout) (None, 128) 0

dense_36 (Dense) (None, 64) 8256

dense_37 (Dense) (None, 4) 260

===

Total parameters: 7,330,628

Trainable parameters: 7,328,708

Non-trainable parameters: 1,920

Every convolution layer is intercepted with normalization layers as these improve convergence speed

and reduce overfitting as an added bonus. The final three layers are fully connected dense layers, with

rectilinear activation function. The output layer makes use of Softmax function for multiclass

classification.

Optimizer

Adaptive momentum (Adam optimizer) being one of the best and the most effective of the currently

available adaptive rate adjusting algorithms is utilized for the base models.

Since this base model must again classify the images into multiple classes, the loss function employed

is categorical cross entropy.

Aggregation of models

Thirty models would suffice for an improvement in classification when compared to the non-

ensemble method. All these models are weak classifiers which when combined can improve the

accuracy by a considerable amount.

For each model, we need a training iteration. For each iteration, a sample of the training data is

selected based on weights. These weights are adjusted in every iteration, based on the previous

model’s classification result in order to focus on misclassified samples. After the models are trained,

they are tested with the unused examples of the training set and the accuracy obtained is used to

determine the effectiveness of the neural networks which is used to determine the contribution of the

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 73

network in the overall prediction. The models with higher accuracy contribute more in weighted votes

for determining the final results.

Figure 6: The Accuracy of the first model generated

Figure 6. is a snapshot of the accuracy of the first model generated. Similarly, 30 different models

were generated with varying accuracies ranging from 50 percent to 70 percent, each model targeting a

different feature.

Accuracy and observation

The prediction process is performed by determining the maximum weighted sum of the predictions

from individual networks. Figure 7. displays the weighted sum of predictions for every class, the

estimated class is obtained by using the argmax() function of Numpy.

Figure 7: Prediction matrix

Figure 8: Accuracy of the ensemble

It is interesting to find that even though none of the individual models have an accuracy that exceeds

70%, the overall accuracy of all 30 models combined is 73.3% as displayed by Figure 8.

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 74

Conclusion
It is fascinating and highly unusual; to find that large neural networks often perform worse than

shallow ones due to the diminishing gradient problem. Diminishing gradient occurs when repeated

differentiation causes imploding values, this eventually produces zero gradient value, thus nullifying

weight change. Hence, the neural network will remain stuck in the dangerous doldrums of n-

dimensional space. Residual Neural Network solves this by creating bypasses to previous layers so

that gradients are never zero, thus always allowing the network to change its weights and navigate to

lower regions of the hyper-space. Hence, Residual Neural Networks are designed to be very deep for

improved performance. The only drawback would be the significantly larger training time.

Unfortunately, Kaggle has a limit on the training time permitted and this inhibits me from

experimenting with bigger and better models. Adaboosting algorithm is a popular algorithm which

boosts models and improves performance as a whole. It is exciting to note that a collection of weak

classifiers can produce improved accuracies when used together. Champion neural networks models

usually consist of an ensemble of massive networks capable boosting the accuracy to astounding

extents. Thus, a combination of the models described in the project could greatly boost the

performance.

References:

[1]Christos Stergiou, Imperial College London and DimitriosSiganos,Imperial College London,

“Neural Networks” in “Study”, [Online article], 2019

 [2]Apoorva Agarwal, “Loss Functions and Optimization Algorithms. Demystified.” in“Data Science

Group IIT Roorkie, Medium”, [Online article], 2017.

[3]KeviMader, CTO at 4Quant and Lecturer at ETH Zürich, Switzerland,“Dermatology MNIST:

Loading and Processing” in “Kaggle”, [Online Kernel], 2018.

[4] Sergey Ioffe, Google and Christian Szegedy, Google, “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift” in “Arxiv.org”,[Published Paper] 2015.

Available reference online, https://arxiv.org/abs/1502.03167v3 [Accessed: March 2, 2019]

[5] Alex Krizhevsky ,University of Toronto, Ilya Sutskever, University of Toronto and Geoffrey E.

Hinton, University of Toronto. “ImageNet Classification with Deep Convolutional Neural Networks.

Neural Information Processing Systems”, 2012. 25. 10.1145/3065386.

[6]Tschandl, Philipp &Rosendahl, Cliff & Kittler, Harald, 2018. “The HAM10000 Dataset: A Large

Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions. Scientific

Data”. 5. 10.1038/sdata.2018.161.

[7]Schwenk, Holger. (2001).”AdaBoosting Neural Networks: Application to on-line Character

Recognition” 10.1007/BFb0020278.

[8] Bergstra, James & Pinto, Nicolas & Cox, David, 2015. SkData: Data sets and algorithm evaluation

protocols in Python. Computational Science & Discovery. 8. 014007. 10.1088/1749-4699/8/1/014007.

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 75

[9] ZohebAbai, NishadRajmalwar, [Preprint] 2019. “DenseNet Models for Tiny ImageNet

Classification”.

[10] Open Source, “Sci-Kit learn User Guide” in “Sci-kit learn”, [Online Documentation] 2007.

Available online reference, https://scikit-learn.org/stable/user_guide.html [Accessed: August, 2017]

[11] Tharwat, Alaa. Frankfurt University of Applied Sciences, 2018. “AdaBoost classifier: an

overview” 10.13140/RG.2.2.19929.01122.

[12] Korovin, Iakov, [Preprint] 2019. “An Effective Hybrid Approach for Optimizing the Learning

Process of Multi-Layer Neural Networks”

[13] Open Source, “Keras: The Python Deep Learning library” in “Keras.io”, [Online Documentation]

2018. Available online reference, https://keras.io/getting-started/sequential-model-guide/ [Accessed:

December, 2018]

[14] E. Schapire, Robert, Microsoft Research, 2013. “Explaining AdaBoost” 10.1007/978-3-642-

41136-6_5.

[15] Baig, Mubasher&Awais, Mian& El-Alfy, El-Sayed, 2017, “AdaBoost-Based Artificial Neural

Network Learning. Neurocomputing” 248. 10.1016/j.neucom.2017.02.077

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 76

