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ABSTRACT 

 

 This paper aims to detect and classify skin cancer using state-of-the-art machine learning techniques. 

The HAM10000 (Human Against Machine) dataset, which contains 10,015 labelled images of skin 

lesions, was released for academic research and has since been widely used to showcase various 

machine learning approaches. Neural networks, inspired by the human brain, have become 

increasingly popular across numerous domains. A specialized variant known as Convolutional Neural 

Networks (CNNs) has proven particularly effective for image processing tasks. Standard architectures 

such as VGG16, ResNet50, GoogLeNet, and LeNet are recognized for their high performance and 

have consistently ranked among the top models in the annual ImageNet competition. Although one of 

these champion models could have been applied to this classification problem, the dataset used is 

highly imbalanced and skewed. Without appropriate data representation, even the most advanced 

models struggle to learn the distinguishing features between classes effectively. To address this 

challenge, several experiments were conducted to enhance the accuracy of the classification results.  

 Keywords: Skin Cancer, HAM10000,Convolutional Neural Network (CNN), Imbalanced Dataset, 

VGG16, ResNet50, GoogLeNet, LeNet 

INTRODUCTION 

Skin cancers are malignant growths that originate from the skin's layers. These cancers result from the 

uncontrolled proliferation of abnormal skin cells, which can invade surrounding tissues and 

metastasize to other parts of the body. Over 90% of skin cancer cases are attributed to prolonged 

exposure to ultraviolet (UV) radiation from the Sun. The depletion of the ozone layer and the growing 

popularity of artificial tanning methods, such as tanning beds, have significantly increased UV 

exposure, thereby elevating the risk of developing skin cancer. Accurate and early diagnosis of skin 

cancer is crucial for effective treatment and improved survival rates. Traditionally, diagnosis relies 

heavily on dermatologists' expertise, which may not always be readily accessible, particularly in 

under-resourced regions. Therefore, an automated system that can assist in the early detection and 

classification of skin cancer types would be highly valuable. This technique is centred on developing 

a machine learning-based classifier capable of identifying and distinguishing between various types of 

skin cancer from dermatoscopic images. By leveraging deep learning techniques, particularly 

Convolutional Neural Networks (CNNs), this project proposes a robust classification framework. Two 
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different deep learning models have been constructed and evaluated, each designed to learn and 

extract distinctive features from the images to accurately predict cancer types. The comparative 

analysis of these models highlights their individual strengths, limitations, and suitability for real-

world applications. With access to a larger and more diverse dataset, the models can be further trained 

and optimized to improve their performance, potentially achieving state-of-the-art accuracy. Such 

advancements would have a transformative impact on the field of dermatology and oncology, offering 

scalable solutions for early detection and diagnosis, ultimately saving lives and benefiting global 

healthcare. It includes a comparative discussion of popular deep learning models and their 

effectiveness in addressing similar challenges. Following this, the core chapters delve into the 

technical aspects of the project—covering data pre-processing, model architecture, training 

procedures, performance evaluation, and observed outcomes. 

LITERATURE SURVEY 

Alex Krizhevsky ,et.al., “ImageNet Classification with Deep Convolutional Neural Networks. Neural 

Information Processing Systems”, has explored the dataset in a beautiful manner, entirely wholesome 

for the purpose of classification. Exploration of the dataset is a prerequisite for machine learning. We 

must ensure that the dataset is balanced and processed in order to effectively produce a working 

model. Due to limitations of processing power, the size of the image has to be reduced. This is exactly 

what Alex did; he resized every image into 100x75 pixels, allowing the kaggle processors to work 

better and product faster results. The Machine learning model created in this case is a classic deep 

convolution neural network. This usually involves a series of convolution layers with tapering kernel 

size and increasing channel size, intercepted by a dropout layer every now and then. The author has 

rightly relied upon Categorical Cross Entropy, which is required for multi class classification models, 

also called Softmax loss. It is Softmax activation plus a Cross-Entropy loss. If we use this loss, we 

will train a CNN to output a probability over the classes for each image. It is used for multi-class 

classification. A slightly preceding model to the adam optimizer is the Adadelta, which is Adaptive 

Detla optimizer. This is of great importance for learning rate annealing, which requires special 

heuristics to ensure rapid and efficient convergence of the convolution network model. 

Detection and analysis of Skin cancer: 

Figure1 comprises of all the steps taken in order to create a trained machine learning model which 

classifies skin cancer into 7 different types. The subsequent sections of this chapter explain every step 

in detail. 
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Figure1: Flow chart to create the model 

 

Pre-processing and preparation of data 

Preprocessing data enables the neural network to identify the significant features which is a rather 

difficult task for a neural network on its own. Since, the following model classifies the skin cancer 

solely based on the image of the kin lesion, the most popular form of preprocessing images is 

normalizing the pixel values. It has been proven that normalizing the input increases the accuracy and 

training speed of the model. 

Normalization 

For the dataset provided, two types of normalizations were used. Those are Min-Max normalization 

and Z-score normalization. Out of these, the Z-score normalization has produced a significant 

accuracy, unlike that of min-max normalization. 
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Z-Score normalization:  

The primary advantage of using the Z-score normalization is the forced binding of the dataset to a 

single distribution. Machine learning models find it hard to learn when the dataset consists of different 

distributions, thus slowing down the learning process and the classification will lead to higher error 

rates due to the non-familiarity of unseen data. Thus, constraining the data to a particular distribution 

helps with improved accuracy. It is highly advised to create a preprocessing pipe line which performs 

normalization. Figure 2. displays the difference between the normalized image and the image prior to 

normalization. In this case, every channel (RGB) of the image has been normalized individually. 

 

Figure2: Before and after Normalization  

Splitting dataset into training and testing set 

It’s a standard practice to split the available data into two sets, the training set and the validation set. 

The primary purpose of machine learning is to identify the general patterns in the data in order to 

predict or classify unseen data. Thus, we would like to test the performance of our model by running 

on a validation set that validates the classification and produces an accuracy score. This is a very 

important step as it contributes to detecting overfitting, a real programmer’s nightmare. Overfitting is 

characterized by high accuracy of the model over the training set and lower accuracy over the 

validation set. Overfitting occurs when the model is identifies patterns and features which are local to 

the training set, rather than the general population as a whole. Remember, an overfitted model is 

utterly useless and a massive waste of resources. 

Residual Neural Network Model 

The model generated for this task is a specific convolution neural network known as residual neural 

networks. It is designed with the primary idea of keeping vanishing gradient at bay, which is an issue 

that stalls the learning and makes all the resources spent fruitless. 
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This model has 4 different types of convolution layers, each varying in the number of filters and their 

dimension. 

The convolution layers are: 

1. 64 channel, 3x3 kernel 

2. 128 channel, 3x3 kernel 

3. 256 channel, 3x3 kernel 

4. 512 channel, 3x3 kernel 

Structure of the Residual Neural network 

_________________________________________________________________ 

Layer (type)                 Output Shape              Parameter #    

================================================================= 

max_pooling2d_7 (MaxPooling2 (None, 18, 24, 64)        0          

_________________________________________________________________ 

conv2d_169 (Conv2D)          (None, 37, 49, 64)        1792       

_________________________________________________________________ 

conv2d_170 (Conv2D)          (None, 18, 24, 64)        36928      

_________________________________________________________________ 

conv2d_171 (Conv2D)          (None, 18, 24, 64)        36928      

_________________________________________________________________ 

conv2d_172 (Conv2D)          (None, 18, 24, 64)        36928      

_________________________________________________________________ 

conv2d_173 (Conv2D)          (None, 18, 24, 64)        36928      

_________________________________________________________________ 

conv2d_174 (Conv2D)          (None, 18, 24, 64)        36928      

_________________________________________________________________ 

conv2d_175 (Conv2D)          (None, 18, 24, 64)        36928      

_________________________________________________________________ 

conv2d_176 (Conv2D)          (None, 8, 11, 128)        73856      

_________________________________________________________________ 
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conv2d_177 (Conv2D)          (None, 8, 11, 128)        147584     

_________________________________________________________________ 

conv2d_178 (Conv2D)          (None, 8, 11, 128)        147584     

_________________________________________________________________ 

conv2d_179 (Conv2D)          (None, 8, 11, 128)        147584     

_________________________________________________________________ 

conv2d_180 (Conv2D)          (None, 8, 11, 128)        147584     

_________________________________________________________________ 

conv2d_181 (Conv2D)          (None, 8, 11, 128)        147584     

_________________________________________________________________ 

conv2d_182 (Conv2D)          (None, 8, 11, 128)        147584     

_________________________________________________________________ 

conv2d_183 (Conv2D)          (None, 3, 5, 256)         295168     

_________________________________________________________________ 

conv2d_184 (Conv2D)          (None, 3, 5, 256)         590080     

_________________________________________________________________ 

conv2d_185 (Conv2D)          (None, 3, 5, 256)         590080     

_________________________________________________________________ 

conv2d_186 (Conv2D)          (None, 3, 5, 256)         590080     

_________________________________________________________________ 

conv2d_187 (Conv2D)          (None, 3, 5, 256)         590080     

_________________________________________________________________ 

conv2d_188 (Conv2D)          (None, 3, 5, 256)         590080     

_________________________________________________________________ 

conv2d_189 (Conv2D)          (None, 3, 5, 256)         590080     

_________________________________________________________________ 

conv2d_190 (Conv2D)          (None, 1, 2, 512)         1180160    

_________________________________________________________________ 

conv2d_191 (Conv2D)          (None, 1, 2, 512)         2359808    
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_________________________________________________________________ 

conv2d_192 (Conv2D)          (None, 1, 2, 512)         2359808    

_________________________________________________________________ 

conv2d_193 (Conv2D)          (None, 1, 2, 512)         2359808    

_________________________________________________________________ 

conv2d_194 (Conv2D)          (None, 1, 2, 512)         2359808    

_________________________________________________________________ 

conv2d_195 (Conv2D)          (None, 1, 2, 512)         2359808    

_________________________________________________________________ 

conv2d_196 (Conv2D)          (None, 1, 2, 512)         2359808    

_________________________________________________________________ 

flatten_7 (Flatten)          (None, 1024)              0          

_________________________________________________________________ 

dense_25 (Dense)             (None, 1000)              1025000    

_________________________________________________________________ 

dense_26 (Dense)             (None, 500)               500500     

_________________________________________________________________ 

dense_27 (Dense)             (None, 250)               125250     

_________________________________________________________________ 

dense_28 (Dense)             (None, 4)                 1004       

_________________________________________________________________ 

 

The convolution layers are interceded with batch normalization layers in an attempt to reduce 

covariate shift and improve training speed. Another alternative would have been to use dropout layers 

instead of normalization layers, but they also contribute in avoiding the dreaded case of overfitting. 

After every 4 sets of convolution layers, a convolution layer without the activation function is 

provided so that the result produced can be added to the earlier result produced by the layer, preceding 

the current layer by four layers. Finally, after the series of convolution layers, we add a flatten layer 

which converts the 2D representation of the outputs from the convolution layer into a single 

dimension output. The flatten layer allows, us to further connect several layers of dense feed-forward 

layers, which eventually conclude with an output layer. 
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In this example, utilized a 3 layer deep feed-forwards which ends with an output layer with a Softmax 

activation function. Our task being a multi classification task, cannot be expressed with sigmoid 

function, instead we use the Softmax functions which is the generalized version of the sigmoid 

function specifically meant for multi class classification. Sigmoid and Softmax can be alternatively 

used for binary classification. 

Optimizer 

 Adaptive momentum (Adam optimizer) is the latest and most effective of the currently available 

adaptive rate adjusting algorithms. It detects the change in momentum during back propagation, 

allowing it to smartly adjust the decaying learning rate, to improve the convergence rate to optimal 

solution. Since this task is a multi-classification problem, the loss function employed is categorical 

cross entropy which is an extension to the binary cross entropy. 

The training was performed with a batch size of 19 for 90 epochs. Several other batch sizes were tried 

and tested in an attempt to find the proper value to avoid overfitting. The standard convention 

identified is that, the batch size must be decreased to increase fitting and reduced to avoid overfitting. 

Thus, by carefully adjusting the number of epochs and batch size, we can avoid the usage of a dropout 

layer. 

Accuracy and observations 

Validation set for testing purpose wasn’t used to determine test metrics during training as it drastically 

reduced the accuracy for the final result. Since image processing demands a massive dataset and 

HAM10000 has certain classes barely exceeding 100 occurrence which inhibits the usage of 

validation set approach. Fig 6.1 displays the graphical representation of Training Metrics for every 

epoch. 

 

Figure 3: Graphs displaying training accuracy and training loss for every epoch 
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As a validation set isn’t used for training, it is very easy for over fitting to occur. As can be seen in 

this case, the training accuracy is a massive 99% as shown in Figure 3, however when the final model 

was tested on the test set the accuracy was still a remarkable 76%. Perhaps, with further tuning we can 

achieve a greater accuracy. 

 

Figure 4: First epoch of training 

 

Figure 5: Mid-training, notice the increment in accuracy 

From Figure 4 and 5 notice how the accuracy increases over time with every epoch as the model 

begins to learn. 

Adaptive boosting model 

An Adaboosted model is an ensemble technique which is widely relied upon when imbalanced data is 

required to be classified. This type of model forces the individual models to specially focus and 

identify the features of underrepresented classes. It is done by resampling a training set by favoring 

misclassified examples. There are several other ensemble methods; however a variation of 

Adaboosting is what stuck with me as I realized that other ensemble techniques are specifically used 

for tree style model. 

The traditional Adaboosting model was created for binary classification and libraries with code 

already existed. Since, decision trees aren’t the best model for image classification, the code to 

incorporate Convolution Neural Networks into Adaboosting, and thus we could call this a neural 

ensemble technique. 

In this paper, created a basic neural network whose instance will be repeatedly spawned and trained to 

create the ensemble. Adaboosted technique makes use of 30 models trained over selected samples of 

training data to learn specific features of the images.  

Architecture of Base Model 
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This model has 3 different convolution layers, following the standard Alex net design. Didn’t require 

much thought as this is a tried and tested model. 

1) 32 channel with 3x3 filter 

2) 64 channel with 3x3 filter 

3) 128 channel with 3x3 filter 

Structure of the Base neural network model 

_________________________________________________________________ 

Layer (type)                 Output Shape              Parameter #    

================================================================= 

conv2d_205 (Conv2D)          (None, 73, 98, 64)        1792       

_________________________________________________________________ 

batch_normalization_198 (Bat (None, 73, 98, 64)        256        

_________________________________________________________________ 

conv2d_206 (Conv2D)          (None, 36, 48, 128)       73856      

_________________________________________________________________ 

batch_normalization_199 (Bat (None, 36, 48, 128)       512        

_________________________________________________________________ 

conv2d_207 (Conv2D)          (None, 17, 23, 256)       295168     

_________________________________________________________________ 

batch_normalization_200 (Bat (None, 17, 23, 256)       1024       

_________________________________________________________________ 

conv2d_208 (Conv2D)          (None, 8, 11, 512)        1180160    

_________________________________________________________________ 

batch_normalization_201 (Bat (None, 8, 11, 512)        2048       

_________________________________________________________________ 

flatten_10 (Flatten)         (None, 45056)             0          

_________________________________________________________________ 
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dense_35 (Dense)             (None, 128)               5767296    

_________________________________________________________________ 

dropout_10 (Dropout)         (None, 128)               0          

_________________________________________________________________ 

dense_36 (Dense)             (None, 64)                8256       

_________________________________________________________________ 

dense_37 (Dense)             (None, 4)                 260        

================================================================= 

Total parameters: 7,330,628 

Trainable parameters: 7,328,708 

Non-trainable parameters: 1,920 

_________________________________________________________________ 

Every convolution layer is intercepted with normalization layers as these improve convergence speed 

and reduce overfitting as an added bonus. The final three layers are fully connected dense layers, with 

rectilinear activation function. The output layer makes use of Softmax function for multiclass 

classification. 

Optimizer 

Adaptive momentum (Adam optimizer) being one of the best and the most effective of the currently 

available adaptive rate adjusting algorithms is utilized for the base models. 

Since this base model must again classify the images into multiple classes, the loss function employed 

is categorical cross entropy. 

Aggregation of models 

Thirty models would suffice for an improvement in classification when compared to the non-

ensemble method. All these models are weak classifiers which when combined can improve the 

accuracy by a considerable amount.  

For each model, we need a training iteration. For each iteration, a sample of the training data is 

selected based on weights. These weights are adjusted in every iteration, based on the previous 

model’s classification result in order to focus on misclassified samples. After the models are trained, 

they are tested with the unused examples of the training set and the accuracy obtained is used to 

determine the effectiveness of the neural networks which is used to determine the contribution of the 
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network in the overall prediction. The models with higher accuracy contribute more in weighted votes 

for determining the final results. 

 

Figure 6: The Accuracy of the first model generated 

Figure 6. is a snapshot of the accuracy of the first model generated. Similarly, 30 different models 

were generated with varying accuracies ranging from 50 percent to 70 percent, each model targeting a 

different feature.  

Accuracy and observation 

The prediction process is performed by determining the maximum weighted sum of the predictions 

from individual networks. Figure 7. displays the weighted sum of predictions for every class, the 

estimated class is obtained by using the argmax() function of Numpy. 

 

Figure 7: Prediction matrix 

 

Figure 8: Accuracy of the ensemble 

It is interesting to find that even though none of the individual models have an accuracy that exceeds 

70%, the overall accuracy of all 30 models combined is 73.3% as displayed by Figure 8. 
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Conclusion 
It is fascinating and highly unusual; to find that large neural networks often perform worse than 

shallow ones due to the diminishing gradient problem. Diminishing gradient occurs when repeated 

differentiation causes imploding values, this eventually produces zero gradient value, thus nullifying 

weight change. Hence, the neural network will remain stuck in the dangerous doldrums of n-

dimensional space. Residual Neural Network solves this by creating bypasses to previous layers so 

that gradients are never zero, thus always allowing the network to change its weights and navigate to 

lower regions of the hyper-space. Hence, Residual Neural Networks are designed to be very deep for 

improved performance. The only drawback would be the significantly larger training time. 

Unfortunately, Kaggle has a limit on the training time permitted and this inhibits me from 

experimenting with bigger and better models. Adaboosting algorithm is a popular algorithm which 

boosts models and improves performance as a whole. It is exciting to note that a collection of weak 

classifiers can produce improved accuracies when used together. Champion neural networks models 

usually consist of an ensemble of massive networks capable boosting the accuracy to astounding 

extents. Thus, a combination of the models described in the project could greatly boost the 

performance. 
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