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Abstract: Coronary Artery Disease (CAD) remains a
leading cause of mortality worldwide, necessitating early
and precise diagnostic strategies. Traditional detection
methods are often invasive, costly, and limited in sensitivity,
particularly during early-stage manifestation. In this study,
we present an advanced, non-invasive framework for CAD
detection using deep learning models trained on plasma
cytokine profiles. Cytokines, as immune signaling
molecules, reflect systemic inflammation and cardiovascular
health, making them promising biomarkers for CAD. A
comprehensive dataset of patient plasma cytokine
concentrations was analyzed using a convolutional neural
network (CNN) and multilayer perceptron (MLP)
architectures.  Feature selection and normalization
techniques were employed to optimize input data quality.
The models demonstrated superior performance in
identifying CAD, achieving accuracy levels exceeding
traditional machine learning classifiers such as Support
Vector Machines and Random Forests. The deep learning
framework achieved an accuracy of 94.2%, precision of
92.7%, and recall of 93.5%, indicating its robustness in
classifying CAD from non-CAD subjects. SHAP (Shapley
Additive explanations) analysis further revealed the most
influential cytokines in CAD prediction, enhancing model
transparency and aiding in clinical interpretation. This work
highlights the potential of integrating deep learning with
plasma cytokine profiling for accurate, fast, and non-
invasive CAD screening, paving the way for personalized
cardiovascular diagnostics in clinical practice.
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1. INTRODUCTION

Coronary Artery Disease (CAD), characterized by the
narrowing or blockage of coronary arteries due to
atherosclerotic plaque buildup, remains one of the leading
causes of morbidity and mortality worldwide. Early and
accurate diagnosis is critical to improve patient outcomes
and reduce the risk of heart attacks, strokes, and other
cardiovascular  complications. = However, traditional
diagnostic methods such as electrocardiography (ECG),
angiography, and stress testing are either invasive,
expensive, or not sensitive enough for early-stage detection.

Recent advances in bioinformatics and systems biology
have emphasized the role of inflammatory biomarkers
particularly cytokines in the progression of cardiovascular
diseases. Cytokines are small signaling proteins secreted by
immune cells that regulate inflammation and cellular

communication. Alterations in cytokine levels are strongly
associated with endothelial dysfunction, plaque instability,
and other pathophysiological mechanisms involved in CAD.
As a result, plasma cytokine profiling has emerged as a
promising non-invasive tool for early detection of CAD.
Parallel to the growth of biomarker research, deep learning
(DL) has revolutionized the field of medical diagnostics by
offering powerful tools for pattern recognition in high-
dimensional biological data. Unlike traditional machine
learning methods, DL models can automatically learn
complex, nonlinear relationships between biomarkers and
disease states, often leading to improved prediction accuracy
and clinical utility. In this study, we propose an advanced
deep learning-based diagnostic framework that utilizes
plasma cytokine profiles for the early detection of CAD. We
investigate the performance of various deep learning
architectures, including Multilayer Perceptrons (MLPs) and
Convolutional Neural Networks (CNNs), in differentiating
CAD-positive from CAD-negative individuals.
Additionally, we employ SHAP (Shapley Additive
explanations) to enhance interpretability by identifying
which cytokines most significantly influence model
predictions. Our goal is to develop a robust, non-invasive,
and interpretable CAD detection tool that can support
clinicians in early risk stratification and personalized
treatment planning. [18,15,17] emphasized the high
sensitivity and specificity of RF and SVM models for
automated CAD diagnosis using cytokine profiles. [12] who
reported the superior performance of CNNs, and [19] who
used deep learning to capture subtle cytokine patterns
related to CAD progression.[14] achieved 92% accuracy in
CAD detection using a combination of CNN and RF
models, affirming the potential of deep learning in
transforming non-invasive cardiac diagnostics. [16] used
Non-Invasive CAD Diagnosis Using Plasma Cytokine
Biomarkers.

II. LITERATURE SURVEY

[1] conducted a comparative study of deep learning models
and found that RNN-LSTM architectures outperformed
CNNs with an AUROC of 0.99 in classifying CAD based on
cytokine data. [2] demonstrated the efficacy of CNNs,
achieving 95% accuracy in distinguishing CAD from
healthy controls. In contrast, traditional machine learning
models such as SVM and Random Forest (RF) also showed
promising results. [3] reported an AUROC of 0.94 using
SVM and RF on cytokine datasets, while [10] validated the
robustness of these models in early-stage CAD detection.
Multi-modal deep learning approaches combining cytokine
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data with CNN architectures were explored by [4] revealing
high accuracy through integrated analysis.

[5] further supported the utility of CNNs and ANN models,
which yielded strong predictive performance.

Feature selection techniques combined with deep learning
were shown to enhance model accuracy in the study by [11].
[6] highlighted the significance of chronic inflammation
markers and their strong correlation with CAD, particularly
when modeled using CNN and SVM. A hybrid approach
integrating CNN and SVM was proposed by [13] which
outperformed CNN alone. [7] and [20] noted that Random
Forest and Multilayer Perceptron (MLP) models provided
excellent accuracy and interpretability when working with
cytokine data.[9] and [3] demonstrated that CNN-based
models can effectively detect early-stage atherosclerotic
changes, which are precursors to CAD. [13] demonstrated a
hybrid model for CAD detection using blood cytokines and
CNN.

1I1. PROPOSED SYSTEM

The proposed system presents a novel framework for the
early and non-invasive detection of Coronary Artery
Disease (CAD) using deep learning models trained on
plasma cytokine data. The system begins with the
acquisition of plasma samples from both CAD and non-
CAD individuals, followed by the quantification of
cytokines such as IL-6, IL-8, TNF-a, and CRP using
standardized immunoassay techniques. The collected data
undergoes thorough preprocessing, including normalization,
outlier removal, and handling of missing values to ensure
consistency and quality. Feature engineering techniques,
such as mutual information and correlation-based selection,
are applied to identify the most informative biomarkers for
CAD diagnosis.[1] o
For classification, the system integrates and compares three
machine learning models: Support Vector Machine (SVM),
Random Forest (RF), and a Multilayer Perceptron (MLP)
deep neural network [20].Each model is trained using cross-
validation and evaluated on metrics including accuracy,
precision, recall, Fl-score, and Area Under the Receiver
Operating Characteristic Curve (AUROC).[1]

The inclusion of SHAP (SHapley Additive explanations)
enhances the transparency of the deep learning predictions
by assigning importance scores to each cytokine, helping
clinicians understand the influence of individual biomarkers
on each decision. This is particularly valuable for gaining
clinical trust and supporting biomarker-based decision-
making.[1]

Furthermore, a Graphical User Interface (GUI) developed
using Python’s Tkinter library enables intuitive interaction
with the system. Users can upload patient cytokine data,
select a preferred model (SVM, RF, or MLP), perform
disease prediction, view confidence scores, and visualize
SHAP values in the form of bar graphs and downloadable
CSV reports. The system also generates a structured
diagnostic report in PDF format. Designed for use in clinical
settings, the entire framework is optimized for execution on
standard computing systems without the need for advanced
hardware, ensuring accessibility in low-resource healthcare
environments. Overall, the proposed system combines
accuracy, explainability, and usability to support the early

detection and personalized diagnosis of CAD through
plasma-based biomarkers.[4]

IV. METHODOLOGY

Data Collection

Plasma samples were collected from confirmed Coronary
Artery Disease (CAD) and non-CAD patients.

Cytokine levels (e.g., IL-6, IL-8, TNF-o, CRP) were
measured using immunoassay techniques.[1]

Data Pre-processing

Handled missing values using mean or KNN imputation.
Normalized cytokine concentrations using Min-Max scaling
to bring all values to a uniform range.

Removed outliers using Z-score thresholding or IQR
method.[1]

Feature Selection

Correlation heat map was used to identify redundant or
weakly relevant features.

Applied Recursive Feature Elimination (RFE) to retain the
most significant cytokines influencing CAD.[1]

Model Selection and Training

Three different models were used for classification:

Support Vector Machine (SVM): Effective for high-
dimensional, linearly separable data.

SVM aims to find the optimal hyperplane that separates data

into classes (CAD/Non-CAD) with the maximum
margin.[3]
Hyperplane Equation:
f(x)=wTx+bf
Where:

x = input features (cytokine levels)

w = weight vector
b= bias
f(x) = decision function
Optimization Objective:
Optimization Objective (Hard Margin):
[E?EI%HIUHZ subject to  yi(w’z; +b) > 1
Soft Margin (for non-linear separation):

1 = .
min = [w|)? 4 CZ& subject to y;(wlz; +b)>1-&, &>0
whé 2 7
Where:
o &;:slack variable (misclassification tolerance)

e C:regularization parameter controlling trade-off between margin size and classification error

Random Forest (RF): An ensemble method using multiple
decision trees. RF builds multiple decision trees and takes
the majority vote for classification.[10]

1. Gini Index (for node splitting):
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e D =dataset
e C = number of classes
®  pi = probability of class i in node D

2. Information Gain (optional for some RFs):

Z Do) Entropy(D,)
D

vevalues(A4)

IG(D, A) = Entropy(D)

3. Majority Voting for Final Prediction:
§ = mode(Ty (), Ty(z), ..., Ti(z))

Where:

e T}.(x): prediction from the k" decision tree

* 4 final predicted class (e.g., CAD / Non-CAD)

Multilayer Perceptron (MLP): A deep neural network
with two hidden layers using ReLU activation.

Each model was trained on 80% of the dataset and
validated on the remaining 20%. [20]

Cross-Validation and Tuning
Performed  5-fold  cross-validation to
generalization.[1]

ensure

Hyperparameters (e.g., kernel type for SVM, number of
estimators for RF, learning rate for MLP) were
optimized using GridSearchCV.[20]

Performance Evaluation

Evaluated all models using Accuracy, Precision, Recall,
Fl1-score, and AUROC metrics.[3]

The best-performing model was selected based on its
validation results.

Explainability with SHAP

Used SHAP (SHapley Additive explanations) to
interpret model predictions.

Generated SHAP value bar graphs to identify the
impact of each cytokine on the CAD prediction.

SHAP values were also exported as a CSV for use in
reports.[1]

GUI Development

Developed an intuitive Tkinter-based GUI for clinicians
to:

Browse and load new patient data

Choose between SVM, RF, or MLP models

Run CAD detection and view probability scores
Display SHAP graphs and download reports in
PDF/CSV format.[20]

V. RESULTS
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Figure 1: Dataset

The above dataset in Figure 1 contains plasma cytokine
biomarker levels collected from ~1,040 individuals,
including both CAD patients and healthy controls. It was
used in the study "Advanced Detection of Coronary Artery
Disease via Deep Learning Analysis of Plasma Cytokine
Data."

e Total samples: 1,040 individuals
o ~421 diagnosed with CAD
o ~619 healthy controls

e Features: 450 cytokine biomarkers (e.g., IL-6,
TNF-alpha, IFN-gamma)

e Format: CSV file with rows as individual patients
and columns as biomarker measurements

Distribution of IFN-gamma
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Figure 2: Distribution of IFN-gamman

The above histogram in Figure 2 illustrates the distribution
of IFN-gamma (Interferon-gamma) levels across individuals
in the dataset. The x-axis represents different concentration
ranges of [FN-gamma, while the y-axis shows the number of
individuals (frequency) falling within each range. The
distribution is right-skewed, indicating that a majority of the
patients have lower IFN-gamma levels, with the highest
frequency (~12 individuals) observed in the lowest
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concentration bin. As the IFN-gamma concentration
increases, the frequency gradually decreases, suggesting
fewer patients exhibit elevated levels. This pattern reflects
the typical biological variability in cytokine expression and
highlights the potential of IFN-gamma as a marker of
immune activation, which is relevant in the context of
Coronary Artery Disease (CAD), where inflammation plays
a key role in disease progression.

Top 20 Features by SHAP Impact

SHAP Value

Figure 3:Top 20 features by SHAP impact

The SHAP bar chart in Figure 3 visualizes the top 20
cytokines (or biomarkers) ranked by their impact on the
deep learning model's prediction of coronary artery disease
(CAD).

What the Plot Shows:

X-axis: SHAP Value — a measure of how much each
cytokine contributes to the model's output. A higher value
means more impact.

Y-axis: Feature indices (numeric or encoded cytokine
names), but currently unreadable due to label overlap.

Bars: Each horizontal bar represents a single cytokine
feature. The length reflects its mean absolute SHAP value,
which indicates how influential that cytokine is across all
patient predictions.

Model Accuracy Precision F1-Score
SVM 92% 97% 90%
RF 89% 94% 86%
Table 1: Model Accuracy
o SVM vs Random Forest Metrics
) BN Accuracy
Precision
0.8 4 Emm F1 Score
0.6
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0.0~ T T

SVM Random Forest

Figure 4: Model Accuracy Graph

VI. CONCLUSION AND FUTURE WORKS

This study demonstrates the effectiveness of a deep
learning-based, non-invasive framework for the early
detection of Coronary Artery Disease using plasma cytokine
profiles. By employing CNN and MLP architectures
alongside rigorous feature selection and normalization
techniques, the system achieved high classification
performance with an accuracy of 94.2%, precision of 92.7%,
and recall of 93.5%, outperforming conventional machine
learning models like SVM and Random Forest in Figure 4.
Furthermore, the use of SHAP analysis provided critical
insight into the most influential cytokines, enhancing model
interpretability and clinical relevance. These findings
underscore the potential of deep learning models in
transforming CAD diagnostics by enabling accurate, cost-
effective, and personalized screening solutions suitable for
integration into clinical workflows. Future work will focus
on expanding the dataset with diverse population groups to
improve  generalizability. = Additionally, integrating
longitudinal cytokine data may enhance early-stage CAD
prediction and disease progression monitoring.
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