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ABSTRACT  

Code review is an essential method in software development that guarantees code quality, security, and 

maintainability.  Nonetheless, conventional manual evaluations are labour-intensive, unreliable, and challenging 

to scale.  Recent breakthroughs in Artificial Intelligence (AI) and Machine Learning (ML) have led to the 

development of automated code review tools that aim to enhance human reviewers by delivering rapid, consistent, 

and contextually relevant input.  This research conducts a systematic literature evaluation of 87 peer-reviewed 

publications (2019–2024) to assess the efficacy, difficulties, and implementation of AI-driven code review 

systems.   

 Recent findings indicate that contemporary AI models, including transformers and graph neural networks (GNN), 

attain 85–92% precision in flaw detection, surpassing conventional static analysers by 18–25%.  Context-aware 

feedback techniques, utilising cross-file analysis and developer history, enhance proposal relevancy by 35–42% 

and decrease review time by 55%.  Notwithstanding these gains, hurdles remain, including deficiencies in 

explainability (over 60% of AI recommendations are dismissed due to ambiguous reasoning), gaps in domain 

adaption (15–20% performance declines in proprietary codebases), and obstacles to integration into developer 

workflows.   

 The research underscores the necessity for human-centered design, adaptive learning methodologies, and uniform 

assessment frameworks to reconcile the disparity between academic inquiry and industrial implementation.  By 

tackling these problems, AI-driven code review systems can fulfil their potential as collaborative instruments that 

improve both efficiency and code quality in software development. 

Keywords: automated code review, artificial intelligence, machine learning, context-aware feedback, software 

engineering, systematic literature review. 

1.0 INTRODUCTION 

Code review is fundamental to contemporary software development, acting as an essential quality assurance 
process that enhances code accuracy, security, and maintainability [1]. This technique has conventionally 
depended on peer manual inspection, wherein developers examine one another's code for bugs, stylistic 
infractions, and architectural concerns. Although effective, manual reviews are labour-intensive, susceptible to 
human mistake, and challenging to scale across large or scattered teams [2]. 

As software systems become increasingly complicated and development accelerates, the demand for 
automated code review solutions to support human reviewers is rising. Recent advancements in Artificial 
Intelligence (AI) and Machine Learning (ML) have facilitated the creation of intelligent systems that can analyse 
code, identify flaws, and offer contextual feedback with minimal human involvement [3]. These AI-driven tools 
utilise methodologies including natural language processing (NLP) to comprehend code semantics and 
documentation, deep learning architectures such as Transformers and Graph Neural Networks to discern intricate 
patterns in code, and both static and dynamic analysis to uncover security vulnerabilities and performance 
bottlenecks [4], [5],[6]. 
Nonetheless, although AI-assisted code review solutions like GitHub Copilot, Amazon CodeGuru, and DeepCode 

have potential, they encounter numerous challenges, including: 

i. Precision and Dependability: AI models can produce false positives and negatives, resulting in a lack of 
confidence among developers [7]. 

ii. Context Awareness: Numerous tools exhibit a deficiency in project-specific comprehension, hence 
constraining the relevance of their suggestions [8]. 
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iii. Explainability: Developers frequently dismiss AI recommendations without explicit rationales [9] 

iv. Integration: Incorporating AI capabilities into established workflows continues to provide difficulties 
[10].  

 

1.1. Research Objectives 

This research performs a systematic literature assessment of AI-driven automated code review systems, focussing 

on three principal questions: 

i. RQ1: Which AI methodologies are most efficacious for automated code review? 
ii. RQ2: In what ways does context-aware feedback enhance review precision and developer 

receptivity? 
iii. RQ3: What quantifiable effects do AI review tools exert on the productivity of software 

development? 
 

This study aims to connect academic research with industrial practice, offering practical insights for 
developers, researchers, and tool designers engaged in the development of next-generation AI-assisted code 
review systems. 

2.0 RELATED WORKS 

2.1 Traditional vs. AI-Powered Code Review 

    Traditional code review is a well-known method in software development, primarily involving manual 
inspection by peers before merging changes into the codebase. Tools such as Gerrit, GitHub Pull Requests, and 
Crucible facilitate this process by providing structured workflows for commenting, suggesting changes, and 
approving modifications [2]. 

The main strengths of the conventional method of code review are: 
i. Human expertise - Developers offer domain knowledge, an understanding of business logic, and an 

awareness of architectural constraints 
ii. Collaborative learning - Junior developers gain from the input of senior developers, which helps to 

improve coding standards. 
iii. Flexibility - Individuals are able to evaluate the readability, maintainability, and conformity of the code 

to the conventions of the team. 
These limitations were present in spite of the fact that it possessed these strengths: 

i. Time consuming - Especially in large teams, manual reviews are a time-consuming process that slows 
down the development process.  

ii. Inconsistency - Different reviewers may apply different standards, which might result in subjective 
feedback. 

iii. Problems with Scalability - As projects expand, manual reviews tend to become impracticable, which 
leads to an increase in bottlenecks. 

2.2 AI-Powered Code Review - Advancements and Benefits 

   Recent breakthroughs in Artificial Intelligence (AI) and Machine Learning (ML) have resulted in automated 

code review systems that improve efficiency and precision. Tools such as DeepCode, Amazon CodeGuru, and 

OpenAI Codex utilise artificial intelligence to identify errors, propose enhancements, and uphold best practices 

[11]. 

Key benefits of using AI to review code include the following: 

i. Speed & Automation - AI reviews code in a matter of seconds, hence minimising latency in continuous 
integration and continuous delivery (CI/CD) pipelines [3].  

ii. Consistency - Artificial intelligence works to eliminate human bias by applying uniform criteria. 
iii. Context-Aware Suggestions - contemporary computer systems are able to comprehend the semantics of 

code, dependencies, and historical modifications [12]. 
 

The results of a comparison between traditional review and AI-powered code review are presented in Table 1. 
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Table1. comparison of traditional review with AI-powered code review 

Aspect Traditional 

Code 

Review 

AI-

Powered 

Code 

Review 

Speed Slow 
(hours/days) 

Fast 
(seconds) 

Consistency Variable High 

Scalability Limited Highly 
scalable 

Learning 
Curve 

Requires 
training 

Improves 
with usage 

2.3 Context-Aware Feedback 

Contemporary AI-driven code review systems have progressed from basic rule-based evaluations to include 

advanced context-sensitive feedback methods. These algorithms evaluate several contextual variables to deliver 

more pertinent and practical recommendations to developers [12]. Three fundamental elements define 

contemporary context-aware feedback systems: 

i. Code Context Understanding - Today's sophisticated systems make use of a variety of methods to 
comprehend code context including cross-file analysis, which involves analysing call graphs and data 
flow graphs to see how changes affect modules that are dependent on one another, evaluated temporal 
context when comparing the most recent changes to those that occurred in the same code areas in the 
past and discovering project-specific patterns though learning organisational coding conventions from 
existing codebases[13]. A study by [16] confirmed that systems incorporating cross-file context reduced 
false positives by 40% compared to single-file analysers. 

ii. Developer Context Integration - Leading tools now personalize feedback based on individual coding 
patterns that encompass the process of adapting proposals to the typical implementation style of a 
developer [10], the team practices by coordinating the recommendations with the conventions and norms 
that are special to the team and adjusting the granularity of suggestions based on the estimated level of 
developer competence associated with the experience level [17]. A case study by [18] showed that 
personalized feedback improved developer acceptance rates from 58% to 82% for AI suggestions. 

iii. Domain-Specific Context - Specialised systems incorporate rules that are specific to the framework by 
gaining an understanding of framework idioms and best practices [3], ensuring compliance with industry 
standards such as the Health Insurance Portability and Accountability Act (HIPAA) or the Motor Industry 
Software Reliability Association - C (MISRA-C) and the ability to recognise domain-specific patterns 
and limitations [8]. 

Despite the progress that has been made, there are significant challenges that need to be addressed; a 

comprehensive context analysis has resulted in an increase in processing time [6], data protection concerns have 

been raised as a result of developer behaviour modelling, and adequate past data is required in order to achieve 

effective personalisation [19]. 

Recent developments have resulted in a number of noteworthy breakthroughs, such as techniques for context-

aware attention, incremental context modelling [20], and explainable context integration [21]. 

According to the findings of a benchmark conducted by [11], context-aware systems outperformed context-free 

techniques by a margin of 28% in terms of suggestion relevance metrics, while maintaining comparable runtime 

performance. 

2.4 Challenges & Limitations 

Code review systems that are powered by artificial intelligence show a great deal of potential; yet, their general 

acceptance and efficacy are hindered by a number of technical and practical shortcomings.  Recent research 

conducted by [15] classifies these restraints into four basic dimensions, which are as follows: 
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i. Accuracy and Reliability Concerns- The existing methods provide erroneous messages in 15-30% of 
instances, resulting in alert fatigue [3]. When models are overfitted to their training data, they often 
exhibit poor performance on unique code patterns outside their training distribution, resulting in 
vulnerabilities that are rare yet significant and usually remain unnoticed. According to the findings of a 
study conducted by [7] of GitHub Copilot, 22% of the ideas connected to security had vulnerabilities, 
which highlights vulnerabilities in reliability. 

ii. Scalability and Performance Issues - Compared to shallow analysis, full-context analysis brings about a 
three to five times increase in the amount of time required for evaluation [13], when it comes to 
enterprise-scale codebases, large language models have a difficult time dealing with memory constraints 
[22] and due to the limitations of real-time processing, the majority of systems are unable to offer instant 
feedback while they are actively being developed [17]. 

iii. Human Factors and Adoption Barriers - There are deficiencies in explainability, as 68% of engineers 
dismiss AI recommendations lacking a clear rationale [9], integration with existing development 
pipelines remains challenging, resulting in workflow disruptions, and teams require six to twelve months 
to establish confidence in AI reviewers [23]. 

iv. Ethical and Organizational Challenges - Concerns regarding intellectual property arise when artificial 
intelligence generates ideas, resulting in ambiguities in code ownership [16]; models perpetuate existing 

biases present in the training data, thereby exacerbating these biases [24]; and malicious actors may 

exploit model deficiencies, posing security risks [25]. 
Recent approaches addressing these limitations including continuous learning systems using uncertainty 

Quantification, which is a rating system for the amount of confidence in specific concepts, staged review methods 

for hybrid human-artificial intelligence workflows, and adaptive model updating, which is a component of 

continuous learning systems. According to the findings of a case study conducted by Microsoft, the combination 

of uncertainty indicators and human oversight resulted in a reduction of false positive rates by 42 percent while 

simultaneously maintaining detection coverage [8]. 

3.0 METHODS AND MATERIAL 

This literature study employs a methodical, multi-phase approach to thoroughly examine intelligent automated 

code review systems. Our methodology integrates quantitative bibliometric analysis with qualitative content 

assessment, adhering to the systematic literature review principles in software engineering as outlined by [26], 

with modifications for AI-centric research. 

3.1 Research Questions - We address three primary research questions: 

i. Which AI methodologies are most efficacious for automated code review? 

ii. In what ways does context-aware feedback enhance review precision and developer receptivity? 

iii. What quantifiable effects do AI review tools exert on the productivity of software development? 

3.2 Search Strategy - We conducted an exhaustive search across five digital libraries: 

i. IEEE Xplore 

ii. ACM Digital Library 

iii. SpringerLink 

iv. ScienceDirect 

v. arXiv (CS.LG and CS.SE categories) 

Search strings combined Boolean operators: 
("AI" OR "machine learning" OR "deep learning") 
AND 
("code review" OR "static analysis" OR "program analysis") 
AND 
("automation" OR "optimization" OR "feedback") 

3.3 Inclusion/Exclusion Criteria - We applied rigorous selection criteria: 

Inclusion: 
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i. Peer-reviewed publications (2019-2024) 

ii. Empirical evaluations with quantitative results 

iii. Focus on AI/ML applications in code review 

iv. Minimum 10 participant studies for user evaluations 

Exclusion: 

i. Theoretical papers without implementation 

ii. Non-English language publications 

iii. Duplicate studies across venues 

iv. Tools without published evaluation metrics 

3.4 Quality Assessment - Each paper was evaluated using a 10-point checklist adapted from [27]: 

i. Clear research objectives (1pt) 

ii. Reproducible methodology (2pt) 

iii. Appropriate evaluation metrics (2pt) 

iv. Statistical significance (1pt) 

v. Comparison with baselines (2pt) 

vi. Threat analysis (2pt) 

Any Papers scoring <6/10 were excluded from final analysis. 

3.5 Data Extraction and Synthesis - For included studies, we extracted: 

i. AI techniques employed 

ii. Evaluation metrics (precision, recall, F1-score) 

iii. Dataset characteristics 

iv. Key findings 

v. Limitations reported 

We employed thematic synthesis of [28] to identify recurring patterns, grouping findings into: 

i. Technical approaches 

ii. Performance outcomes 

iii. User experience factors 

3.6 Validation Process - To ensure reliability: 

i. Dual independent review of 20% random sample (κ=0.82 agreement) 

ii. Discrepancies resolved through consensus 

iii. Senior researcher audit of final selections 

iv. Backward snowballing of references 

Our methodology integrates insights from the "Systematic Literature Review Framework for AI in Software 

Engineering," as referenced in [21], which underscores certain quality requirements for machine learning 

publications, standards for model card reporting, and tracking of dataset provenance. 

We employed visualisation of similarities viewer (VOSviewer) for co-citation analysis, Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) flow diagrams for selection tracking, and custom Python 

scripts for metric aggregation. 

The final corpus comprises 87 studies with the following distribution: Conference papers: 58 (66.7%), Journal 

articles: 22 (25.3%) and workshop papers: 7 (8.0%). Recent works encompass a large-scale evaluation of 
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transformer models for code review by [14], a longitudinal study on AI adoption in industrial code review by [15], 

and a benchmarking framework for context-aware systems by [3]. 

4.0 RESULTS AND DISCUSSION 

Our comprehensive study of 87 studies identifies notable trends in the efficacy of AI-driven code reviews, 

obstacles to adoption, and performance standards. The results are synthesized and discussed below, integrating 

key findings, discrepancies, and future directions. 

4.1 Performance of AI Models in Code Review 

Recent research indicates significant enhancements in fault identification accuracy with contemporary AI 

methodologies: 

i. Transformer-based models - (CodeBERT, CodeT5, and CodeLlama) attain 85-92% accuracy in detecting 
code smells and vulnerabilities, surpassing static analysers such as SonarQube by 18-25% [14]. 

ii. Graph Neural Networks (GNNs) - exhibit notable efficacy in identifying control flow irregularities, with 
an 89% recall rate for intricate logic errors [5]. 

iii. Hybrid methodologies - that integrate symbolic execution with machine learning, such as Facebook's 
SapFix, diminish false positives by 40% relative to solely machine learning methods [3]. 

The primary finding indicates that the most effective systems, such as Amazon CodeGuru and DeepCode, utilise 

ensemble methods that integrate various AI techniques [19]. 

Despite the remarkable technological capabilities of contemporary AI systems, their practical implementation falls 

short of academic expectations. This inconsistency arises from three essential tensions: 

i. Precision-Explainability Trade-off - The most precise models (e.g., large transformers) frequently 
operate as "black boxes," diminishing developer confidence. Google's internal research indicates that 
incorporating interpretability elements reduces model accuracy by 5-8% while enhancing 
recommendation acceptance by 40%. 

ii. Generalization-Specialization Dilemma - Models pretrained on open-source data exhibit suboptimal 
performance on private codebases characterised by distinct patterns. Microsoft's adaptive learning 
system exhibits potential, revealing a 22% enhancement in precision following six months of 
organization-specific optimisation. 

iii. Automation-Assistance Balance - Developers embrace AI as partners rather than substitutes. A notable 
discovery from the survey [29] indicates that 68% of engineers desire AI to detect issues while favouring 
human oversight for resolutions, particularly on architectural choices. 

4.2 Context-Aware Feedback Effectiveness 

The incorporation of contextual information results in a significant improvement in the relevancy of suggestions, 

as demonstrated in Table 2. 

Table 2: Context-Aware Feedback Effectiveness 

Context Type Improvement Over Baseline Study 

Cross-file dependencies +35% precision [16] 

Developer history +28% suggestion acceptance [17] 

Project conventions +42% style rule compliance [23] 
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According to a case study conducted by Microsoft, context-aware models were able to cut the amount of time 

spent on developer review by 55% while maintaining problem detection rates [8]. 

The research consistently acknowledges the significance of contextual awareness; nonetheless, obstacles in 

implementation remain: 

i. Computational Costs: Full-context models need 3-5 times more resources than file-local analysis. 
Amazon CodeGuru's stratified methodology uses lightweight models for preliminary scans and utilises 
more complex models exclusively on modified files, presenting a practical resolution. 

ii. Temporal Context Challenges: Although historical code analysis enhances recommendations, swiftly 
evolving applications experience "concept drift." Facebook's approach is ongoing retraining via a 30-day 
sliding window of commit history. 

4.3 Adoption and Developer Experience  

User studies reveal critical insights: 

i. Positive Impacts - 72% of developers report reduced mental load with AI assistance and Junior engineers 
show 2.1x faster onboarding with AI mentoring. 

ii. Persistent Challenges - 61% reject suggestions lacking explanations and Alert fatigue occurs when >30% 
of suggestions are false positives. 

Our analysis reveals three overlooked social elements: 

i. Cultural Resistance: 45% of senior engineers in the study dismissed AI suggestions outright, viewing 
them as threats to expertise. Successful deployments at IBM involved co-designing tools with developer 
input. 

ii. Training Requirements: Teams utilising AI reviewers require 3-6 months to develop "meta-skills" for 
assessing recommendations. Google's "AI Pairing" mentorship initiative decreased this duration by 50%. 

iii. Workflow Disruption: Existing solutions inadequately connect with code review practices, such as 
synchronous team conversations. The JetBrains plugin that visualises AI recommendations during 
collaborative IDE sessions demonstrates potential in this context. 

4.4 Industry vs. Academic Performance Gaps 

Practical implementations exhibit 15-20% decreased accuracy compared to academic standards, attributable to 

noisy production codebases, difficulties in integrating legacy systems, and the swift evolution of frameworks. 

Google's internal audit disclosed that its AI reviewer attained 78% precision, in contrast to the 92% stated in 

controlled testing. 

4.5 Emerging Capabilities 

Recent advancements encompass real-time evaluation during Integrated Development Environment (IDE) typing, 

automatic resolution generation for 65% of detected faults, and bias reduction using debiased training datasets. A 

thorough examination of twelve AI models across over 6,000 code reviews by [14] offers a direct comparison of 

transformer designs, innovative measures for context-aware performance, and an open-source benchmark dataset. 

The principal finding revealed that CodeT5 attained a 91.2% F1-score in bug identification when trained with 

cross-project data, exhibiting enhanced generalisation compared to single-project models. 

However, there are new concerns that require immediate attention: 

i. Models trained on GitHub data inherit gender and racial biases in comment tone analysis. This problem 
is mitigated by debiasing procedures, although it is not eliminated entirely. 

ii. Adversarial examples have the potential to influence artificial intelligence reviewers to approve code that 
is vulnerable to attack. An investigation into the use of cryptographic code signing for training data is 
now being conducted. 

iii. Regarding intellectual property, a survey conducted in 2023 found that 32 percent of businesses blocked 
AI reviewers due to concerns about code leakage. The ability to deploy models on-premise is becoming 
an increasingly important differentiator for enterprise tools. 
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Synthesis findings reveal three consistent patterns; AI effectiveness scales with context integration (ρ=0.82 

correlation), secondly, explanation support doubles suggestion acceptance and finally hybrid human-AI 

workflows outperform pure automation. 

5.0 CONCLUSIONS 

The rapid evolution of AI-powered automated code review systems marks a transformative shift in software 

engineering practices. This systematic literature review synthesizes findings from 87 studies to evaluate the 

current state, effectiveness, and challenges of these tools. The evidence demonstrates that AI-driven approaches—

particularly those leveraging transformer architectures, graph neural networks, and context-aware feedback 

mechanisms—can significantly enhance code review efficiency, achieving 85–92% precision in defect detection 

and reducing review time by 30–55%. By integrating cross-file analysis, developer history, and project-specific 

patterns, modern systems have improved suggestion relevance by 35–42%, bridging critical gaps left by traditional 

manual reviews. 

However, widespread adoption remains hindered by persistent challenges. Explainability deficits, domain 

adaptation gaps, and workflow integration barriers underscore the need for human-centric design principles. 

Developers reject over 60% of AI suggestions lacking clear justifications, while performance drops 15–20% when 

models encounter proprietary codebases. Ethical concerns, including bias propagation and security risks, further 

complicate deployment. It is imperative that future efforts prioritise the following in order to fully realise the 

potential of AI-assisted code review: 

i. Transparency- "Glass box" artificial intelligence systems that offer explanations that can be put into 
action are the first step towards achieving transparency.  

ii. Adaptability - Make use of approaches for continuous learning, such as federated learning, in order to fit 
models to the circumstances of organisations without compromising privacy.  

iii. Collaboration - Design hybrid processes that combine human and artificial intelligence, preserving the 
developer's autonomy while employing automation to achieve scalability. 

Not only must the next generation of tools be technically advanced, but they must also be in line with the 

cultural and practical reality of software development. By overcoming these difficulties, AI-powered code 

review has the potential to transform from a promising invention into an irreplaceable tool, thereby driving 

higher-quality code and more efficient development cycles across the industry. 
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