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Abstract: Soybean production, a key aspect of world agriculture, is threatened by a variety of plant 

diseases that can dramatically decrease yield and economic return. Conventional methods of disease 

detection depend heavily on labor-intensive scouting and laboratory tests, which are slow, 

cumbersome, and too late for useful intervention. To overcome these constraints, this study proposes a 

new real-time disease detection system based on Internet of Things (IoT) technologies and Edge 

Artificial Intelligence (Edge AI) to track and diagnose diseases in soybean crops with low latency. 

The envisioned system combines multi-modal sensor observations (temperature, humidity, soil water, 

and leaf wetness) with high-resolution imagery, analysed in real-time with reduced-complexity 

convolutional neural networks (CNNs) running on edge devices like the NVIDIA Jetson Nano. An 

image-based classification and sensor-based anomaly detection hybrid ML method couples image-

based classification with sensor-based anomaly detection using gradient boosting models to increase 

robustness and reliability. A modular and optimized data pipeline ensures seamless integration 

between data collection, pre-processing, model inference, and feedback generation, all within the 

constraints of rural network environments. Latency reduction is a system design focus point. Through 

approaches like model quantization, asynchronous computation, and TensorRT optimization, the 

system performs inference at below 50 milliseconds on edge devices, lessening network reliance and 

power use. Field trials spanning 3 months proved that the system is capable of finding early 

indications of prevalent soybean diseases—frogeye leaf spot and soybean rust—days prior to visual 

affirmation by field crew. The introduced framework is scalable, flexible, and has the potential to 

serve as a template for applications in smart farming across other crops and regions. 

Keywords: Plant Disease Detection, Edge AI, Internet of Things (IoT), Precision Agriculture, Real-

Time Monitoring, Sensor Fusion, Convolutional Neural Networks (CNN) 

1. Introduction 

1.1 Background and Motivation 

Soybean (Glycine max) is a backbone of global agriculture, acting as a mainstay of protein and oil 

supply. In India, soybean is grown over about 12 million hectares with an output of about 13.58 

million tonnes per year. This productivity is, however, less compared to the world average, mainly 

contributed by biotic stresses like fungal, bacterial, and viral diseases. The widespread diseases such 

as anthracnose, frogeye leaf spot, and soybean mosaic virus have a great impact on yield as well as 

quality [1]. Conventional disease detection strategies are based on labor-intensive and time-

consuming manual scouting and laboratory tests, which in many instances lead to delayed 

interventions. The Internet of Things (IoT) and Artificial Intelligence (AI) technologies provide 

promising opportunities for real-time and automated disease detection, allowing timely and accurate 

management practices. 

1.2 Advances in IoT and Edge AI for Agriculture 
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The combination of IoT devices—e.g., environmental sensors and imaging solutions—with AI 

algorithms has transformed precision agriculture. Edge AI, where processing happens locally on 

devices such as NVIDIA Jetson Nano or Raspberry Pi, cuts down on latency and reliance on cloud 

infrastructure. This is especially useful in remote rural regions with poor connectivity. Recent 

research has proven the effectiveness of using lightweight Convolutional Neural Networks (CNNs) on 

edge devices to detect plant diseases with high accuracy and little computational power. 

1.3 Real-Time Disease Detection Challenges 

In spite of advances in technology, there are some challenges that remain: 

1)  Data Integration: Fusing heterogeneous data sources, like sensor data and image data, calls 

for strong data fusion methods. 

2) Latency: Providing real-time processing requires optimized data pipelines and efficient 

algorithms. 

3) Model Deployment: Complex model deployment on resource-limited edge devices calls for 

model compression and optimization techniques. 

4) Scalability: Systems need to be scalable to support large farming regions and varying 

environmental conditions. 

1.4 Study Objectives 

This study will design a real-time disease detection system for soybean cultivation by: 

• Incorporating IoT-based environmental sensors and imaging cameras for holistic data 

collection. 

• Utilizing edge-deployed CNNs for image-based disease identification. 

• Using data fusion algorithms to integrate sensor and image data for increased accuracy. 

• Data pipeline optimization to reduce latency and provide real-time responsiveness. 

2. Literature Review 

2.1 Hybrid Deep Learning Models for Plant Disease Detection 

Bedi et al. proposed a new hybrid model integrating a Convolutional Autoencoder (CAE) and a 

Convolutional Neural Network (CNN) to identify bacterial spot disease in peach leaves. Using the 

PlantVillage dataset of 4,457 images (2,160 healthy and 2,297 infected), the model attained a testing 

accuracy of 98.38% with just 9,914 training parameters, reflecting its efficiency and effectiveness [2]. 

2.2 CNN-Based Approaches in Plant Disease Classification 

Ouamane et al. proposed a CNN-based model enriched with Tensor Subspace Learning and Higher-

Order Whitened Singular Value Decomposition (HOWSVD-MD) for plant disease diagnosis. 

Evaluated on the PlantVillage dataset, the model reached an accuracy of 98.36%, showcasing the 

promise of state-of-the-art tensor decomposition methods to enhance classification accuracy [3]. 

2.3 EfficientNet Models in Leaf Disease Detection 

A paper in the Journal of Healthcare Engineering utilized the EfficientNet B7 architecture to detect 

grape leaf disease. With the use of feature reduction techniques and transfer learning, the model was 

able to have high accuracy while being computationally efficient, which makes it deployable even in 

resource-scarce settings [4]. 

2.4 Integration of IoT and Deep Learning in Plant Disease Detection 
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The recent developments have underscored the collaboration between the Internet of Things (IoT) and 

deep learning methods in agriculture. IoT sensors and cameras enable real-time data acquisition on 

environmental factors and plant health indicators. Deep learning models, especially Convolutional 

Neural Networks (CNNs), analyze this data to identify and classify plant diseases precisely. For 

example, a spotlight review highlighted the efficacy of coupling IoT with deep learning models to 

perform monitoring, data capture, prediction, detection, visualization, and classification of plant 

diseases based on crop images. The work also compared performances of various deep learning 

models using publicly available datasets and offered insight into choosing suitable models based on 

dataset size, anticipated response time, and computing resources available[5]. 

2.5 IoT Architecture in Agriculture 

Implementation of a formal IoT architecture in agriculture improves decision-making, maximizes the 

use of resources, and raises productivity in a sustainable manner. An IoT architecture typically has 

five layers: physical, network, middleware, processing, and application. Sensors and actuators spread 

across farm lands track variables such as soil moisture, temperature, humidity, and plant health. The 

connectivity layer handles communication among these devices and central systems to enable real-

time monitoring and control, which is critical in managing plant diseases [5]. 

2.6 Challenges and Future Directions 

Even with the potential unification of IoT and AI in detecting plant diseases, a number of 

challenges remain: 

• Data Quality and Availability: High-quality, annotated datasets are needed to train 

good models. 

• Model Generalization: It is ensuring that models perform well on different 

environmental conditions and crop varieties. 

• Resource Constraints: Inflating complex models into resource-constrained edge 

devices necessitates model compression and optimization techniques. 

• Scalability: Systems need to be scalable to support large agricultural fields and varied 

environmental conditions. 

3. System Architecture 

 

Fig: AI cloud Computing and Edge Computing[17] 

3.1 IoT Hardware Setup 

IoT hardware configuration for the real-time disease detection system involves the use of various 

sensors and cameras that collaborate to gather information within the soybean farming ecosystem. 

The information gathered is then analyzed on an edge device to identify plant diseases in real-time to 

offer actionable recommendations to farmers. 
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3.1.1 Sensors 

The system employs a mix of environmental and plant-specific sensors to track important parameters 

that affect plant health: 

• Temperature Sensors: These sensors track the ambient temperature within the farming 

environment. Temperature variations can have a dramatic impact on plant growth and are 

frequently linked with disease outbreaks. 

• Humidity Sensors: Humidity is monitored closely since it can be a pointer to the suitability 

of the conditions for the growth of pathogens. High humidity is often a forerunner to fungal or 

bacterial infections in crops. 

• Soil Moisture Sensors: These sensors detect the soil's water content, which is essential for 

keeping plants healthy and thriving. Over-irrigation and under-irrigation can both stress plants 

and leave them vulnerable to diseases. 

• Leaf Wetness Sensors: These detect the water content on the outside of plant leaves. 

Extended leaf wetness encourages the development of a variety of fungal diseases, like rust or 

mildew. 

With the inclusion of these sensors, the system collects complete information regarding the 

atmospheric conditions that might affect the well-being of the soybean crop. 

3.1.2 Cameras 

Two cameras are used to capture visual data at the leaf level: 

• High-Resolution RGB Cameras: The cameras take high-definition images of the soybean 

leaves. These images are utilized to identify visible symptoms of diseases like discoloration, 

wilting, or spots on the leaves. The camera takes images every 5 minutes to offer current 

visual data of plant health. 

• Multispectral Cameras: Multispectral cameras take photographs over a range of 

wavelengths of light, beyond visible light, to see minute variations in plant health that are not 

apparent to the human eye. For instance, multispectral cameras can identify initial signs of 

water stress or fungal infection by examining the way the plant reflects light at different 

wavelengths. Images taken by these cameras are particularly helpful for identifying disease 

early on before symptoms are apparent on the surface. 

3.1.3 Edge Device: NVIDIA Jetson Nano 

The NVIDIA Jetson Nano is used as the edge device for local processing and inference. It's a 

powerful but small device that can perform efficient execution of machine learning models locally 

without cloud processing. The Jetson Nano has a GPU that offers the required acceleration to execute 

complex machine learning models in real-time for disease detection. 

Critical features of the Jetson Nano are: 

• GPU Acceleration: The GPU of the Jetson Nano is designed to perform deep learning 

operations, enabling quick processing of images and sensor data. 

• TensorRT Optimization: TensorRT, NVIDIA's deep learning inference optimizer, is utilized 

to speed up the inference operation, which provides fast response times for identifying 

disease-related abnormalities. 

• Low Power Consumption: Even with its processing strength, the Jetson Nano is a low-

consumption device, which makes it perfect for field deployment where power sources are 

not abundant. 
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3.2 Data Pipeline 

The data pipeline in the system has four stages: Data Collection, Preprocessing, Inference, and 

Feedback Loop. Each of these stages is important in helping ensure the efficiency and accuracy of the 

system in detecting plant diseases in real-time. 

3.2.1 Stage 1: Data Collection 

The collection of data is the first stage in the pipeline where sensors and cameras collect data from the 

field. 

• Sensor Data Acquisition: Sensor data (temperature, humidity, soil moisture, and leaf 

wetness) are acquired at intervals of 10 seconds. The data give real-time monitoring of 

environmental factors that could influence the health of the soybean crop. 

• Image Data Acquisition: The RGB and multispectral cameras take high-resolution images of 

the soybean leaves at an interval of 5 minutes. Image acquisition frequency is aimed at 

striking a balance between the acquisition of timely visual information and data storage 

needs. 

Wirelessly, the acquired data is transferred to the edge device (Jetson Nano) based on communication 

protocols like LoRaWAN or Wi-Fi, depending on the location relative to a network. 

3.2.2 Stage 2: Preprocessing at the Edge 

Once data is gathered, the next thing to do is preprocess data at the edge. This is done to alleviate the 

computational load on the cloud and provide faster processing times. 

• Image Preprocessing: 

• Resizing: Images are resized to a fixed resolution for standardizing input to the machine 

learning models for uniform processing. 

• Normalization: The pixel values are normalized to a fixed range, often 0 to 1, to enhance 

model convergence both in training and inference. 

• Noise Filtering: OpenCV is utilized to filter out the images and remove noise that results 

from external conditions like changing lighting or movement blur. Gaussian blurring or 

median filtering is often employed to clean the images prior to passing them to the model. 

• Sensor Data Normalization: The sensor readings are normalized to a standard scale, such 

that all inputs are comparable when evaluated by the machine learning models. 

3.2.3 Stage 3: Inference Engine 

The preprocessed data is fed to the Inference Engine for disease identification. This stage is 

performed by executing machine learning models on the edge device to evaluate the data and identify 

anomalies. 

• Local Inference: Preprocessed images and sensor data are fed into a deep learning model 

(e.g., CNN) to classify diseases. The NVIDIA Jetson Nano utilizes TensorRT to perform the 

inference job, allowing rapid disease detection in real time. 

• Decision Making: From the analysis, the system makes a decision on whether the soybean 

plants are infected with a particular disease (e.g., rust, mildew, or bacterial infection). The 

inference model provides the probability of disease occurrence and a confidence value. 

3.2.4 Stage 4: Feedback Loop 

After the inference engine identifies a disease, the system initiates a feedback loop to inform the 

farmer and take appropriate action: 
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• Anomaly Detection: If an anomaly is detected by the model (e.g., disease symptom), it 

activates an alert that informs the farmer. Alerts are transmitted using LoRaWAN, a long-

range, low-power wireless communication protocol that makes sure the messages reach the 

target even in locations far from towns where other wireless networks might be absent. 

• Central Dashboard Update: The observed anomaly is also logged and presented on the 

central dashboard, giving the farmer real-time information on the health of the crop. The 

dashboard can be viewed through mobile or web applications, enabling farmers to keep tabs 

on several fields and crops at a time. 

• Automated Actions: Depending on the situation, automated irrigation or spraying equipment 

might be activated based on the detection of the disease to stop the disease from spreading 

further. 

4. Machine Learning Models 

4.1 Image-Based CNN 

For image-based classification of plant diseases, a modified MobileNetV2 architecture is used. 

MobileNetV2 is selected for its computational efficiency and memory usage, such that it is well suited 

to execute on edge devices like the NVIDIA Jetson Nano. The model is trained using a labeled data 

set of 20,000 soybean leaf images that include 6 prevalent diseases like rust, mildew, and bacterial 

blight. MobileNetV2 is augmented with extra layers to better classify disease patterns. The model 

gives disease classification results based on visual symptoms found in the images of leaves and makes 

fast and accurate diagnoses. 

4.2 Sensor Fusion Model 

To combine environmental data with picture-based predictions, a Gradient Boosting Regressor (GBR) 

is applied. The GBR model is trained from time-series sensor readings obtained by temperature, 

humidity, soil moisture, and leaf wetness sensors. The model identifies patterns of change in the 

environment that will be indicative of disease onset, including abrupt fluctuations in humidity or 

levels of soil moisture. By fusing this sensor information with image-based classification, the system 

can provide a more complete picture of plant health, using both visual and environmental inputs to 

make more accurate predictions of disease. 

4.3 Hybrid Decision System 

The Hybrid Decision System blends results from both the image-based CNN and the sensor fusion 

model. This ensemble approach enhances decision-making by combining the best of both models. An 

ensemble logic layer is introduced to the system, which takes the CNN and GBR model predictions 

and makes a conclusive decision. If both models report the disease as present, the system sends an 

alert. Ensemble methods and rule-based logic improve the system's resilience by minimizing false 

positives and false negatives and enhancing the reliability of disease detection in general. 

5. Latency Optimization 

5.1 Edge versus Cloud Benchmarking 

In order to minimize latency, edge inference is compared with cloud inference: 

• Edge Inference Latency: Inference is executed locally on the edge device (NVIDIA Jetson 

Nano) with a latency of merely 45 milliseconds. This minimal latency allows farmers to 

receive real-time disease alerts without delay. 

• Cloud Inference Latency: Conversely, with cloud-based inference, the latency is higher 

because of the time spent on data transmission and processing in the cloud. The overall cloud 
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inference latency taking into account data transmission is about 1.8 seconds. This latency may 

be harmful in time-critical agriculture applications. 

5.2 Pipeline Optimizations 

Multiple optimizations have been made to minimize further latency and maximize efficiency: 

• Asynchronous Data Fetching: Asynchronous fetching of data is performed, allowing sensor 

readings and images to be processed concurrently without blocking other operations. This 

results in better utilization of system resources and improved response times. 

• Quantized Model Weights: Weights of the model are quantized, which minimizes the size of 

the neural network model and accelerates inference without affecting accuracy much. This 

optimization is absolutely necessary while deploying the models on edge devices with less 

processing power. 

• ONNX and TensorRT Optimization: The model is translated into ONNX (Open Neural 

Network Exchange) format and optimized using TensorRT for inference on NVIDIA 

hardware. These optimizations compress the model by 50% without affecting high accuracy, 

enabling faster processing on edge devices. 

 

5.3 Power and Network Optimization 

To optimize power and network usage, the following methods are utilized: 

• Dynamic Sensor Polling: Polling of sensors is calibrated according to environmental stimuli. 

Sensors are polled with higher frequency at possible disease outbursts (e.g., sudden rise in 

humidity), while polling frequency is lowered during static conditions to conserve power and 

maximize battery life. 

• Adaptive Bitrate Streaming: Adaptive bitrate streaming is utilized for image uploads. This 

method dynamically changes the resolution of the image as per the prevailing network 

conditions and the criticality of the event. High-definition images are uploaded during peak 

times, e.g., during detection of a disease, and during normal times, low-definition images are 

uploaded, maximizing both network utilization and power. 

6. Experimental Results 

The experimental results benchmark the performance of the Edge AI system relative to a cloud-based 

system across some key measures such as detection accuracy, inference latency, energy use, and 

uptime during field tests in actual conditions. The outcomes illustrate the striking benefits of utilizing 

Edge AI on the aspects of speed, power efficiency, and reliability in real-time disease diagnosis in 

soybean cultivation. 

Metric Comparison 

Metric Edge AI System Cloud-based System 

Average Detection Accuracy 

 

92.4% 93.1% 

Average Inference Latency 45 ms 1.8 s 

 

Energy Consumption 1.2W 3.7W 

 

Uptime in Field Trials 98.7% 89.3% 

 
     Table 1: Comparative results  
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• Average Detection Accuracy: The accuracy of the Edge AI system is 92.4%, which is lower 

than that of the cloud-based system, 93.1%. Though it is smaller, the difference is within 

tolerance. Since the Edge AI system is running on localized hardware, the minor disparity in 

accuracy is offset by lower latency and power consumption. 

• Average Inference Latency: Another of the most important benefits of the Edge AI system 

is that it has minimal inference latency. The system has an average inference latency of only 

45 milliseconds, which compares favorably with the cloud-based system's 1.8 seconds (with 

transmission included). This decrease in latency is paramount when detecting disease in real-

time to enable farmers to act quickly. 

• Energy Consumption: The Edge AI system has a low power draw of 1.2W, while the cloud-

based system draws 3.7W. This is a substantial reduction in energy usage, crucial to 

deploying the system in remote locations where power sources can be scarce and for 

maximizing the battery life of edge devices used in the field. 

• Uptime during Field Trials: The Edge AI system showed a remarkable 98.7% uptime in 

field trials, which is much better than the 89.3% uptime achieved with the cloud-based 

system. The increased uptime of the Edge AI system reflects its dependability under actual 

usage, where network connectivity and availability of cloud services may be unpredictable. 

The cloud-based system is more vulnerable to downtime because of network failures or 

connectivity problems. 

Field Trial Results 

The system was tested in the field for 3 months on an nanded soybean farm with the goal of detecting 

frogeye leaf spot — a widespread soybean disease. The Edge AI system detected early stages of 

frogeye leaf spot 3 days ahead of when human inspection would have otherwise detected it. Early 

detection is important for avoiding the propagation of disease and reducing the requirement for 

expensive interventions like pesticide spraying. 

The system proved its capability to merge sensor information with image-based analysis to give 

timely and precise disease predictions. The farmers could implement countermeasures in a proactive 

manner based on real-time warnings from the system, reducing the exposure of the crop to disease by 

a large amount and increasing farm productivity as a whole.  

7. Conclusion 

This work proves the viability and functionality of combining Edge AI and IoT for real-time soybean 

disease detection. Integration of image-based and sensor-based machine learning models enables the 

system to continuously track and analyze the health of the plants, providing timely notifications to 

farmers. Disease detection in real-time is assured by the low-latency pipeline, while efficiency in 

inference latency and power reduction makes the system deployable for remote, wide-scale use in 

agricultural environments. 

The field trial results demonstrate the system's robust performance in real-world applications, 

illustrating that the Edge AI system can provide accurate and effective disease detection with low 

latency and energy expenditure. Since it can detect diseases like frogeye leaf spot several days before 

conventional approaches, the system can potentially greatly improve crop yield and disease control in 

soybean cultivation. 

In conclusion, the application of IoT and Edge AI in farming offers a promising future in enhancing 

precision agriculture, allowing farmers to observe crop conditions in real-time, lower input costs, and 

promote sustainability by reducing the application of pesticides and fertilizers. Future research would 

involve enhancing the system's functionality to cover more crops, diseases, and environmental 

conditions, further fine-tuning its performance in large-scale production in varied agricultural areas. 
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8. Future Work 

• Expand to other crops (e.g., maize, wheat). 

• Incorporate drone-based imaging for large-scale monitoring. 

• Investigate federated learning to improve model generalizability without centralized data 

aggregation. 
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