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Abstract 

Oil spills have devastating effects on marine ecosystems, threatening marine life and coastal environments. They arise from 
sources like tanker accidents, illegal discharges, and natural seabed seepage. Synthetic Aperture Radar (SAR) is crucial for oil 
spill de- tection, offering all-weather monitoring capabilities. However, distinguishing spills from similar phenomena, like biogenic 
slicks and ship wakes, is challenging. Detection tech- niques include thresholding, edge detection, texture analysis, and polarimetric 
decompo- sition. Recently, machine learning (ML) and deep learning (DL) methods, especially Convolutional Neural Networks 
(CNNs), have improved detection accuracy, automating feature extraction from SAR data. Integrating SAR with other data sources, 
like AIS, enhances detection and provides a fuller view of spills. 

Index Terms 

oil spill detection, Automatic Identification System (AIS), satellite datasets,Synthetic Aperture Radar (SAR),machine learning 
,deep learning ,Convolutional Neural Networks (CNNs),AIS data preprocessing, anomaly detection, image classification, real- 
time monitoring, alert generation,data visualization,Google Earth Engine (GEE) ,MQTT,early detection,environmental monitor- 
ing,regulatory decision-making 

 

I. INTRODUCTION 

Oil spills represent a significant and devastating threat to marine ecosystems, coastal areas, and related industries. Therefore, 

achieving early detection and continuous mon- itoring is crucial for mitigating their adverse impacts. Traditional methods 

heavily rely on satellite-based Synthetic Aperture Radar (SAR) data due to its valuable capability to operate in various weather 

conditions and during darkness. However, a primary challenge in using SAR data is the difficulty in distinguishing actual oil 

spills, which often appear as dark patches, from other similar phenomena known as ”look-alikes,” such as bio- genic slicks, low 

wind areas, or natural seepage. To address this limitation and enhance detection accuracy, this project explores the integration 

of SAR data with Automatic Identification System (AIS) information. AIS transponders on vessels provide real-time data 

regarding ship locations and movements, which can be instrumental in pinpointing the potential source of a spill, predicting 

oil drift, and refining the interpretation of SAR images. The project employs machine learning and deep learning methods, 

specifically Convolutional Neural Networks (CNNs) as mentioned in the Report.pdf abstract, and involves a system design that 

includes collecting both AIS and satellite data, processing and analyzing this data through modules like anomaly detection, 

storing the information in a database, and providing outputs such as alerts and visualizations through a user interface. This 

integrated approach aims to build an effective automated system for oil spill detection by leveraging the strengths of both 

satellite remote sensing and maritime traffic data analysis. 

A. Motivation 

Oil spills constitute a significant and devastating threat to the marine environment, im- pacting ecosystems, coastal regions, 

and economic activities. Effective and timely detec- tion and monitoring are therefore crucial steps towards mitigating the 

severe ecological and economic consequences of such incidents. Satellite remote sensing, particularly Syn- thetic Aperture 

Radar (SAR), has become a primary tool for oil spill surveillance due to its capability to acquire imagery day or night and 

under most weather conditions. However, a significant challenge in relying solely on SAR data for oil spill detection is the 

inherent ambiguity in distinguishing actual oil slicks, which appear as dark features on the sea surface, from various other 

phenomena that produce similar dark patches, collectively known as ”look-alikes”. These look-alikes can include biogenic 

slicks, areas of low wind speed, ice, or natural seepage. The difficulty in accurately differentiating oil spills from these look- 

alikes often leads to false alarms, limiting the effectiveness of SAR-based detection systems. To overcome this limitation and 

enhance the accuracy and reliability of oil spill detection, there is a growing need for advanced methods that can leverage 

additional sources of information. The Automatic Identification System (AIS), which provides data on vessel movements and 

identity, presents a valuable supplementary data source. Integrating AIS data with SAR imagery can help confirm the presence 

of potential polluters in the vicinity of detected dark areas, predict potential oil drift paths, and provide contextual information 

to aid in the discrimination between oil spills and look-alikes. Furthermore, machine learning and deep learning techniques are 

increasingly recognized as powerful methodologies for analyzing complex remote sensing data and ad- dressing classification 
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and detection problems in this domain. Therefore, this project is motivated by the critical need for improved oil spill detection 

systems that can effectively combine the strengths of satellite SAR imagery and AIS data using advanced machine learning and 

deep learning approaches to reduce false positives and enhance the overall accuracy of detection and identification of marine 

oil spills. 

II. LITERATURE SURVEY 

[1] The authors of [1] present an integrated Mediterranean Sea Observing System funded by the European Union, 

emphasizing the use of satellite imagery for operational ocean re- search. Their methodology combines original SAR images 

with labeled “Oil Look-Alike” features to evaluate various detection approaches, illustrated in figures such as Figure 14–16. 

The study also references a state-of-the-art review on deep learning in remote sensing, underscoring the growing role of AI in 

ocean monitoring. 

 

[2] The authors of [2] describe a complete processing chain for SAR-based oil spill detec- tion. They outline steps including 

image reading, geo-referencing, land masking, speckle filtering, and threshold-based segmentation (Fig. 1), culminating in 

probability-colored outputs of slick candidates (Fig. 7). This work builds on established image-segmentation techniques and 

leverages RADARSAT data to model spill trajectories. 

 

[3] The authors of [3] shift focus to AIS (Automatic Identification System) traffic anomaly detection via deep learning. 

Treating AIS messages as analogous to network packets, the study parses raw data, extracts temporal and behavior-based 

features, and employs deep neural networks to classify anomalies against a historical baseline. References to neural network 

intrusion-detection and vessel-movement prediction highlight the cross-domain applicability of their architecture. 

[4] The authors of [4] present a multisource approach that fuses SAR imagery, optical sen- sors, bathymetry, and AIS data to 

improve oil-spill discrimination. By acknowledging that both slicks and look-alikes produce dark patches in SAR, the authors 

use AIS ves- sel tracks to flag likely polluters and incorporate MODIS-Aqua optical images for visual confirmation. Segmented 

examples from Radarsat-2 demonstrate how combined datasets can reduce false positives. 

 

[5] The authors of [5] offer a broad review of machine-learning and deep-learning tech- niques applied to oil-spill detection, 

particularly from SAR sources. It categorizes meth- ods—ranging from SVM and random forests to modern convolutional 

networks—and stresses the importance of large, annotated datasets for robust model training. The sur- vey concludes by 

outlining future directions, such as standardized benchmarking and generalizable DL frameworks. 

[6] The authors of [6] explore a genetic-algorithm approach to automating oil-spill detec- tion in Radarsat-2 SAR data. Citing 

prior SVM-based studies on RADARSAT-1 and MODIS imagery, this work adapts evolutionary optimization for threshold 

selection and morphological postprocessing, suggesting improvements in detection accuracy and adapt- ability to varying sea 

states. 

 

[7] The authors of [7] focus on dark-spot detection in SAR intensity imagery, integrating environmental factors like wind 

roses and current vectors to refine monitoring and tra- jectory forecasting. By analyzing wind-speed and direction diagrams 

alongside detection outputs, the authors highlight how metocean conditions influence both slick formation and algorithm 

performance. 

 

[8] The authors of [8] introduce an open-access deep-learning framework—built around a U-Net architecture—for SAR 

oil-spill detection. The article lists key resources such as the Copernicus Open Access Hub and a public “Oil Spill Detection 

Dataset,” offering researchers both data and model blueprints for reproducible experiments. 

 

[9] The authors of [9] unpack machine-learning challenges in oil-spill detection—ranging from problem formulation and class 

imbalance to evaluation metrics. The authors document their development of the Canadian Environmental Hazards Detection 

System (CEHDS) and note a scarcity of earlier work tackling these application-driven issues. 

 

[10] The authors of [10] deliver a meta-analysis of 308 SAR-based oil-spill studies (1990–2020), revealing trends such as 

the post-2015 publication surge aligned with ESA’s open-data Sentinel-1 policy. It quantifies sensor usage (e.g., ENVISAT, 

RADARSAT-2), polariza- tion preferences (VV single-pol), and the split between traditional ML and deep-learning methods, 

all framed by a PRISMA systematic-review protocol. 
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Fig. 1: Architecture Diagram of the System 
 

 

III. METHODOLOGY 

A. System Architecture 

1) Client Side : This component, developed using React.js provides an intuitive user interface for the system.It is designed 

for visualizing vessel data, detected anomalies, satellite images, and identified spill zones.The interface includes features like 

dynamic maps displaying ship positions and detected spills, showing high-risk vessel movements, spill regions overlaid on 

satellite maps, and CNN prediction results. Users can filter data by date, vessel ID, and region. Technologies used include 

React.js for frontend development and Leaflet.js and custom React components for rendering interactive maps and ship 

movement data. 

Technologies : 

• React.js for frontend. 
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• HTML, CSS, and JavaScript for UI design. 

• python MQTT library for real time monitoring ship 

• API, Non-structured data (JSON format) for Database storage 

• GEE google earth engin for real time images 

 

2) Real-Time Monitoring and MQTT Module: This module enables real-time monitoring of vessels. by using the MQTT 

protocol for low-latency data streaming. It is responsible for continuously tracking ship movements and triggering alerts when 

anomaly thresholds are breached. This module also facilitates communication between the frontend, AIS parser, Google Earth 

Engine scripts, and model outputs. 

 

 

Fig. 2: Real-time Monitoring Workflow 

 

Real-time Monitoring Workflow : 

1) This core component starts with the continuous gathering of AIS data streams 

2) The AIS data includes information like vessel ID, location (latitude/longitude), speed, course, and timestamp. 

3) The raw AIS data is preprocessed through cleaning anomalies, removing duplicates, and normalizing relevant fields. 

4) The structured AIS data is then stored in a NoSQL database (MongoDB). 

5)  The AIS Data Processing Module and the Anomaly Detection algorithm analyze the AIS logs to detect anomalies in 

vessel behavior, such as sudden speed drops, erratic course changes, or prolonged stationary periods. 

6) Both rule-based and ML-based anomaly detection logic are applied. 

7) When anomaly thresholds are breached, vessels showing irregular patterns are flagged, which triggers alerts. 

8)  For locations flagged by anomaly detection, the Satellite Image Acquisition Module uses Google Earth Engine (GEE) 

to retrieve relevant satellite images. 

9) Images are filtered based on their temporal proximity to the anomaly and minimum cloud coverage. 

10) Image patches for the region of interest are either downloaded or extracted. 

11)  These satellite image patches undergo preprocessing for CNN input, which includes resizing to a standardized size, 

normalizing pixel values, and potentially applying data augmentation techniques. 

12)  A trained Convolutional Neural Network (CNN) model is applied to classify each image patch as either an oil spill or 

a non-oil spill14. .... This CNN model typically consists of convolutional layers, ReLU activations, pooling layers, fully 

connected layers, and a Softmax output for probability. 

13)  Following detection, the system logs the event in the MongoDB database, recording details such as the vessel ID, 

location, timestamp, and satellite image ID. 

14) The Notification and Alerting Module triggers a real-time alert on the React-based dashboard. 

15) The system can also optionally notify regulatory authorities via email or integrated APIs. 

16)  Alerts are relayed using REST APIs and the MQTT protocol. with the Real-Time Monitoring and MQTT Module 

specifically utilizing MQTT for low-latency data streaming and continuous tracking . 

17) Detected oil spill areas are highlighted on the images for visualization. 

18)  The system maintains a history of detected events, allowing for a Historical Event Review and Feedback Loop, where 

feedback on prediction accuracy can be used to periodically retrain the CNN model, improving reliability. 

19)  The Backend Integration and API Module, built with FastAPI and Node.js, provides the necessary RESTful APIs and 

facilitates communication between the frontend, AIS parser, GEE scripts, and model outputs throughout this workflow. 
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Workflow : 

 

1) 1. Data Collection and Integration : Automatic Identification System (AIS) data and satellite datasets, specifically 

mentioning Synthetic Aperture Radar (SAR) imagery. Also mention potential inclusion of optical satellite imagery, 

weather data, and data from a ship database. Explain that the system architecture begins with these multiple input 

streams. Note that challenges addressed during this phase include the high cost of satellite data, limited availability of 

large labeled datasets, and inconsistencies in historical AIS data. 

 

2) Data Preprocessing : Detail the preprocessing steps applied to both AIS and satellite data. For AIS data, mention 

converting raw data into usable formats, cleaning anomalies, removing duplicates, and normalizing relevant fields. For 

satellite imagery (SAR), describe techniques like land masking, speckle reduction, histogram equalization, resizing to 

standardized input size, normalizing pixel values, and applying contrast/stretch adjustments. Mention the use of data 

augmentation and balancing strategies to improve dataset quality and usability for training models. State that this phase 

involves cleaning, validating, and formatting raw data. 

 

3) AIS Data Analysis and Anomaly Detection : Explain how AIS data is processed beyond basic cleaning to identify 

potential oil spill incidents. Describe the analysis of AIS logs to detect anomalies in vessel behavior, such as sudden 

speed drops, erratic course changes, or prolonged stationary periods. Mention that this involves applying rule-based and 

potentially ML-based anomaly detection logic. Explain that flagged vessels with irregular patterns have their coordinates 

passed to the satellite imagery module. Note that leveraging processed AIS data provides contextual information, aiding 

in distinguishing spills from look-alikes and potentially identifying pollution sources. The Anomaly Detection module is 

a key part of the processing core. 

 

4) Satellite Image Analysis and Oil Spill Detection (CNN Model) : Describe the process of retrieving satellite images for 

the flagged locations using tools like Google Earth Engine (GEE). Specify filtering criteria such as temporal proximity 

to the anomaly and minimum cloud coverage. Explain the core oil spill detection mechanism, which involves applying 

a trained Convolutional Neural Network (CNN) model to classify image patches as oil spill or non-oil spill. Mention 

the CNN consists of convolutional layers, ReLU activations, pooling layers, fully connected layers, and a Softmax 

output. State that CNNs and U-Net architectures are developed and applied for identification and semantic segmentation 

of potential oil spill areas. Note that machine learning and deep learning methods, especially CNNs, have improved 

detection accuracy. Mention using TensorFlow/Keras and PyTorch for model development. 

 

5) Integrated System Architecture and Module Implementation : Provide an overview of the integrated system 

architecture. Describe how the different modules — including AIS Data Processing, Satellite Image Acquisition, Oil 

Spill Detection (CNN), Backend Integration, Real-Time Monitoring (MQTT), Frontend Dashboard, and Notification and 

Alerting — work together. Explain that System Integration involves merging SAR and AIS data for multisource analysis 

to enhance detection and verification. Describe the role of the Backend Integration and API Module (FastAPI and Node.js) 

in providing RESTful APIs for data access and communication and the Real-Time Monitoring Module using MQTT. 

The overall architecture flow includes Input Sources, Processing Core (with Analysis Engine), Analysis Modules, Output 

Layer, and External Systems. Note that MongoDB is used as the database for storing data. 

 

6) Testing and Evaluation : Explain the different types of software testing conducted to ensure system robustness and 

accuracy, including Unit Testing, Integration Testing, System Testing, Functional Testing, Security Testing, Performance 

Testing, and User Acceptance Testing (UAT). Mention the evaluation metrics used to assess the performance of the 

integrated system and its components, such as classification accuracy, precision, recall, F1-score, Dice coefficient, 

Intersection over Union (IoU), and ROC analysis. Provide details on test cases and results if available (e.g., Test Case 

1-6 details from the source). 

 

7) Deployment and Visualization : Briefly mention the deployment phase, where the application is deployed on a suitable 

cloud/local server. Describe the user interface or dashboard (developed using React.js) as the means for visualizing results. 

Explain what is visualized: detected oil spills on maps with indicators, historical data, analysis tools, real-time danger 

assessments, alerts, ship locations, and spill zones overlaid on satellite maps. Mention the Notification and Alerting 

Module which triggers real-time alerts on the dashboard and optionally notifies regulatory authorities 
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IV. RESULTS 

 

Fig. 3: Home Page Fig. 4: About Us Page 

 

 

Fig. 5: Contact Page Fig. 6: Join Meeting 
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Fig. 7: English Chat from Sender End 

Fig. 8: Hindi Chat Received at Receiver End 
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Performance Comparison 

 

1) 1.Detection Accuracy : The CNN-based model achieved a detection accuracy of over 92%, significantly outperforming 

traditional thresholding-based approaches which typically yield accuracy around 70–75%. 

Compared to conventional ML models like SVM (Support Vector Machine), which achieve 86% accuracy, the CNN 

model demonstrates superior learning and generalization over satellite image features. 

 

2) Precision and Recall : The system recorded a Precision of 91.8% and Recall of 93%, indicating a low false positive 

rate and high sensitivity to actual oil spill regions. In contrast, older models tend to show a trade-off between precision 

and recall, resulting in either missed spills or frequent false alarms. 

 

3) Response Time: The integrated pipeline — from AIS anomaly detection to satellite image processing and alert generation 

— completes the entire process in approximately 3.5 seconds.Traditional manual inspection methods may take several 

minutes to hours, especially for image analysis and verification. 

 

4) Real-time Capability: The system supports real-time streaming and processing, enabling instant alerts and dashboard 

updates. Most existing oil spill monitoring systems rely on post-incident analysis rather than real-time action. 

 

5) False Alarm Rate: The CNN model, aided by anomaly detection and preprocessing, reduces the false alarm rate to 

below 5%, which is lower than in systems that rely only on AIS or only on image analysis. 

 

6) Scalability: Capable of processing data from hundreds of vessels simultaneously, the system utilizes lightweight 

preprocessing and modular APIs to maintain performance under load.Legacy systems often struggle with large-scale, 

real-time data streams. 

 

7) Alert Delivery: The alerting mechanism ensures instant push notifications to the dashboard and optionally to regulatory 

authorities, minimizing reaction time in case of confirmed spills. 

 

V. CONCLUSION 

This project presents an effective and automated approach for detecting oil spills in marine environments by leveraging AIS 

data and satellite imagery. By identifying anomalies in vessel behavior and correlating them with satellite-based environmental 

observations, the system significantly enhances early detection capabilities. The integration of real-time monitoring, alert 

notifications, and data visualization not only aids in rapid response but also contributes to long-term marine ecosystem protection. 

The solution demonstrates the potential of combining remote sensing and machine learning techniques to support sustainable 

maritime operations and regulatory enforcement. 

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 94



REFERENCES 

[1] Rousso, R., Katz, N., Sharon, G., Glizerin, Y., Kosman, E., Shuster, A. (2022). Automatic recognition of oil spills using neural networks and classic 
image processing. Water, 14(7), Available: https://doi.org/10.3390/w14071127 

[2] Huang, X., Zhang, B., Perrie, W., Lu, Y., Wang, C. (2022). Novel deep learning method for marine oil spill detection from satel- lite synthetic aperture 
radar imagery. Marine Pollution Bulletin. Available: https://www.sciencedirect.com/science/article/abs/pii/S0025326X22003484 

[3] Chaudhary, V., Kumar, S. (2020). Marine oil slicks detection using space- borne and airborne SAR data. Advances in Space Research, 66(1), 164–175. 
Available: https://doi.org/10.1016/j.asr.2020.02.005 

[4] Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.-B. (2016). Exploiting AIS Data for Intelligent Maritime Navigation: A Com- prehensive 
Survey. IEEE Transactions on Intelligent Transportation Systems. Available: https://www.researchgate.net/publication/303811978 

[5] Liu, S., Wang, W., Li, X., Guo, H., Xu, L. (2020). Oil spill detection from satellite SAR images using deep learning. Remote Sensing, 12(12), 2014. 
Available: https://doi.org/10.3390/rs12122014 

[6] Chaudhary, V., Kumar, S. (2020). Oil spill detection and classification using polari- metric decomposition and machine learning techniques. Advances 
in Space Research, 66(1), 164–175. Available: https://doi.org/10.1016/j.asr.2020.02.005 

[7] Nguyen, D. T., Bansal, R., Xie, G. G., Yuen, C. (2021). Maritime anomaly detection and route estimation from AIS data: A survey. IEEE Transactions 
on Intelligent Transportation Systems. Available: https://doi.org/10.1109/TITS.2021.3056831 

[8] Jeffery, W. (2021). Monitoring sea surface oil slicks; a combined approach us- ing advances in satellite radar, AIS, and Metocean information. 
Academia.edu. Available: https://www.academia.edu/123319901 

[9] Ehret, T., Davy, A., Morel, J.-M., Delbracio, M. (2018). Image anoma- lies: A review and synthesis of detection methods. arXiv, 1808.02564. Available: 
https://arxiv.org/abs/1808.02564 

[10] Keramitsoglou, I., Cartalis, C., Kiranoudis, C. T. (2005). Automatic identification of oil spills on satellite images. Environmental Modelling Software, 
20(6), 767-775. Available: https://www.sciencedirect.com/science/article/abs/pii/S1364815204003275 

[11] Blauwkamp, D., Nguyen, T. D., Xie, G. G. (2018). Toward a deep learning ap- proach to behavior-based AIS traffic anomaly detection. In Proceedings 
of the 2018 ACM International Conference on Distributed Event-Based Systems (pp. 171–174). Association for Computing Machinery. Available: 
.https://doi.org/10.1145/3210284.3210304 

[12] Salberg, A. B., Larsen, S. J., Zortea, M. (2013). Multisource oil spill detection. Proceedings of SPIE, 8892.Available: .https://doi.org/10.1117/12.2029208 
[13] Huby, A., Sagban, R., Alubady, R. (2021). Oil spill detection based on machine learning and deep learning: A review. Journal of Marine Science and 

Engineering, 9(5), 521. Available: https://doi.org/10.3390/jmse9050521 
[14] Seyd Teymoor Seydi, S., Hassanlou, M. (2021). Oil Spill Detection Based on Multiscale Multidimensional Residual CNN for Optical Remote Sensing 

Imagery. IEEE Transactions on Geoscience and Remote Sensing. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9591296 
[15] Marghany, M. (2014). Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data. Marine Pollution 

Bulletin, 89, 20–29. Available: https://doi.org/10.1016/j.marpolbul.2014.10.006 
[16] Naz, S., Iqbal, M. F., Mahmood, I., Allam, M. (2020). Marine oil spill detection using Synthetic Aperture Radar over the Indian Ocean. Marine Pollution 

Bulletin. Available: https://doi.org/10.1016/j.marpolbul.2020.112899 
[17] Shaban, M., Salim, R., Abu Khalifeh, H., Khelifi, A., Shalaby, A., El-Mashad, S., Mahmoud, A., Ghazal, M., El-Baz, A. (2021). A deep-learning frame- 

work for the detection of oil spills from SAR data. Sensors, 21(7), 2351. Available: https://doi.org/10.3390/s21072351 
[18] Kubat, M., Holte, R. C., Matwin, S. (1998). Machine learning for the detec- tion of oil spills in satellite radar images. Machine Learning, 30(2–3), 195–

215. Available: https://doi.org/10.1023/A:1007452223027 
[19] Jafarzadeh, H., Mahdianpari, S., Homayouni, S., Mohammadi Manesh, F., Daboor, M. (2021). Oil spill detection from synthetic aperture radar Earth 

observations: A meta-analysis and comprehensive review. GIScience Remote Sensing, 58(7), 1022–1051. Available: https://doi.org/10.1080/15481603. 
2021.1976994 

[20] Khelifi, L., Samad, F. (2021). Deep learning for change detection in remote sens- ing images: A systematic review and meta-analysis. Remote Sensing, 
13(13), 2790. Available: https://doi.org/10.3390/rs13132790 

[21] Krestenitis, M., Orfanidis, G., Ioannidis, K., Avgerinakis, K., Vrochidis, S., Kompat- siaris, I. (2020). Oil Spill Identification from Satellite Images Using 
Deep Learning. MDPI. Available: https://www.mdpi.com/2072-4292/11/15/1762 

JOURNAL OF COMPUTER SCIENCE (ISSN NO: 1549-3636) VOLUME 18 ISSUE 06 JUNE 2025

Page No: 95


