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Abstract - Accurate detection and measurement of bone 

deformities—such as lower-limb alignment errors, 

spinal misalignments, and joint abnormalities—are 

critical for planning corrective orthopedic treatments. 

Recent AI-driven methodologies employ deep learning 

techniques to automatically locate anatomical landmarks 

on X-rays and CT/MRI scans, significantly improving 

efficiency and reducing dependency on expert manual 

assessment. For instance, landmark-based models 

operating on biplanar radiographs achieved vertebral 

detection accuracy rates of up to 98%, with mean 

absolute landmark and angular errors of less than 1.8 

mm and ~5.6°, respectively.  Multi-view convolutional 

neural networks further enhance 3D deformity 

assessments of lower limbs, yielding landmark 

localization errors of around 2.05 mm and angular 

deviations of below 0.9°. Additionally, segmentation-

based deep learning methods targeting knee 

deformities—like varus/valgus misalignment—achieved 

an AUC of 0.9839 in angle classification, utilizing 

hyperparameter-optimized CNN pipelines. These AI 

systems streamline deformity quantification, reducing 

time and inter-observer variability while offering 

accuracy comparable to clinicians. Together, these 

advances demonstrate the high potential of machine 

learning in supporting early detection and corrective 

planning of bone deformities across orthopedic practice. 

 

Index Terms— AI, Deep Learning, X-rays, CT/MRI, CNN, 
Bone deformity. 

I. INTRODUCTION  

Bone deformities, which include structural anomalies such 

as limb length discrepancies, angular deviations (e.g., genu 

varum or valgum), and spinal curvatures (e.g., scoliosis), 

can significantly impair mobility and quality of life if not 

diagnosed and treated early. Traditional diagnosis of such 

deformities often relies on manual interpretation of 

radiographic images by orthopedic specialists, involving the 

identification of anatomical landmarks and the calculation 

of critical angles like the hip–knee–ankle (HKA) angle or 

Cobb angle in scoliosis. These manual processes are time-

consuming, subject to inter-observer variability, and highly 

dependent on clinical expertise 

With the rise of artificial intelligence (AI), particularly 

machine learning (ML) and deep learning (DL), there is a 

growing shift toward automated and objective assessment of 

bone deformities. Machine learning algorithms can learn 

from large volumes of annotated radiographic data to 

identify deformities with high accuracy, speed, and 

reproducibility. Deep learning models—especially 

convolutional neural networks (CNNs)—have shown great 

success in segmenting bones, detecting anatomical 

landmarks, and estimating angular deformities with minimal 

human intervention. 

Recent studies have demonstrated that ML-based systems 

can achieve near-human accuracy in identifying skeletal 

misalignments in the knee, spine, and foot. For example, 

deep segmentation models have been used to measure 

angles on lower-limb radiographs for deformity 

classification. In contrast, landmark detection models have 

been applied to automatically locate vertebrae in spinal X-

rays. These models not only accelerate diagnostic 

workflows but also provide consistent and repeatable 

results, making them highly valuable in clinical orthopedics 

and pre-surgical planning. 

The integration of machine learning into bone deformity 

identification has the potential to transform orthopedic 

diagnostics by enabling early detection, supporting 

telemedicine in remote areas, and reducing reliance on 

highly specialized clinicians. This study aims to explore and 

develop a robust ML-based framework for the accurate 

identification and classification of bone deformities from 

medical images, using state-of-the-art techniques in image 

processing, deep learning, and medical AI. [11] presents a 

comprehensive survey of deep learning techniques applied 

to the segmentation of skin lesions and bone deformities. It 

categorizes models into fully convolutional networks 

(FCNs), U-Net variants, and attention-based architectures. 

The survey also compares public datasets, evaluation 

metrics, and highlights current challenges such as class 

imbalance, boundary accuracy, and data scarcity. The paper 

suggests that while deep learning has shown great success, 

further improvements in generalization and explainability 

are still required for clinical adoption. [12] Introduces a 

method for segmenting bone and soft tissues in medical 

images using statistical texture distinctiveness. It relies on 

texture analysis to differentiate between anatomical 

structures in X-ray or CT images. The algorithm computes 

statistical differences in texture features (e.g., local variance, 

entropy) and uses them to segment complex regions with 

minimal manual input. The method demonstrated robustness 

across various imaging modalities and offers potential for 

integration into diagnostic workflows for orthopedic 

assessments.[13] presents a clinical case study applying 

deep learning models to diagnose orthopedic deformities, 

such as scoliosis and joint malalignments, from X-ray and 

MRI scans. It utilizes a CNN-based model trained on 

annotated datasets to classify and localize abnormalities. 

The study reports improved diagnostic accuracy compared 

to traditional radiological analysis and demonstrates the 

feasibility of AI-assisted diagnosis in real-world orthopedic 

clinics. Emphasis is placed on model interpretability, 

clinical integration, and radiologist feedback. 
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II. LITERATURE SURVEY 

 

Cullen et al. (2024) [1] proposed a deep learning-based 

system for measuring varus/valgus deformities in standard 

knee radiographs, achieving a high intra-class correlation 

coefficient (ICC > 0.93) and a mean absolute angle error of 

approximately 1.3°, making it reliable for both pre- and 

post-operative assessments.  

Hussain et al. (2024) [2] developed a U-Net-based model to 

measure the hallux valgus angle (HVA) in foot radiographs, 

delivering results comparable to expert clinicians and 

demonstrating the model's utility in diagnosing toe 

deformities. 

Ryu et al. (2024) [3] utilized a semantic segmentation model 

(U2-Net) on weight-bearing foot X-rays and achieved 

angular measurement errors ranging between 0.9° and 1.6° 

on both internal and external datasets.  

Kim et al. (2024) [5] introduced a pyramid-based CNN 

framework for the automatic detection of clinical deformity 

angles such as the medial proximal tibial angle (MPTA) and 

lateral distal tibial angle (LDTA). The system reported high 

accuracy, even in the presence of orthopedic implants, with 

angle errors generally under 1.1°. 

Zhao et al. (2025) [4] presented a robust CNN optimized 

using a reptile search algorithm to estimate the hip–knee–

ankle (HKA) angle from lower-limb radiographs. The model 

achieved an AUC of 0.9539, offering precise deformity 

classification and outperforming traditional measurement 

techniques. In the field of spinal diagnostics, the Spine FM 

model (2024) [6] leveraged vision-based foundation models 

to achieve vertebral segmentation with 97.8% to 99.6% 

accuracy and a Dice coefficient of approximately 0.94. 

Complementing this, the Spine CLUE framework (2024) 

integrated contrastive learning with uncertainty estimation 

to achieve state-of-the-art vertebra localization on 

challenging CT datasets such as VerSe19 and VerSe20. 

Tang et al. (2025) [8] explored a multi-view ensemble deep 

learning system for knee deformity analysis using both 

anterior-posterior and lateral radiographs. The model was 

capable of reconstructing 3D anatomical relationships and 

achieved landmark detection errors of less than 2 mm. 

In pediatric orthopedics, Chen et al. (2025) [9] developed a 

lightweight CNN model tailored for scoliosis detection 

among children. With over 94% classification accuracy and 

optimized for mobile deployment, it holds great promise for 

school-based screening programs. 

Lee et al. (2024) [10] contributed to the interpretability of 

AI-based bone analysis by incorporating Grad-CAM 

visualization into their CNN pipeline. This enabled 

clinicians to understand the model’s focus areas during 

deformity detection, thus increasing trust and transparency 

in automated orthopedic diagnostics. 

 

III. PROPOSED SYSTEM 

 

The proposed system aims to develop an intelligent, 

automated framework for identifying bone deformities in 

radiographic images using advanced machine learning 

techniques. The system is designed to reduce manual effort, 

minimize human error, and deliver consistent, clinically 

relevant assessments of skeletal misalignments, such as 

varus/valgus knee deformities, hallux valgus, and spinal 

curvatures. 

The core idea of the system is to combine deep 

convolutional neural networks (CNNs) for feature extraction 

and landmark detection algorithms for measuring deformity-

specific angles such as the hip–knee–ankle (HKA) angle, 

hallux valgus angle, and Cobb angle. The system will be 

trained on annotated datasets of medical images (e.g., X-

rays, CT scans), using transfer learning techniques with 

models like U-Net, ResNet, or EfficientNet for better 

generalization with limited labeled data. The proposed 

system is expected to deliver high diagnostic accuracy, 

consistent angle measurements, and rapid analysis suitable 

for integration into orthopedic clinical workflows. It will 

assist clinicians in early deformity detection, pre-surgical 

planning, and remote diagnosis, especially in areas with 

limited specialist access. 

 

IV. METHODOLOGY 

 

The proposed system follows a structured machine learning 

pipeline to automatically detect and analyze bone 

deformities from radiographic images. The methodology 

includes several key stages: data acquisition, preprocessing, 

model training, angle computation, and deformity 

classification. The following steps describe the methodology 

in detail: 

 

1. Data Acquisition 

Medical image datasets (X-rays, CT, or MRI) are collected 

from publicly available sources such as ISBI. These datasets 

are annotated with key landmarks and deformity angles 

(e.g., hip–knee–ankle angle, Cobb angle). The dataset is 

divided into training, validation, and test sets. 

 

2. Image Preprocessing 

To improve the quality and consistency of input images, the 

following preprocessing steps are applied: 

 

Grayscale normalization 

Histogram equalization for contrast enhancement 

Noise reduction using Gaussian filtering 

Data augmentation (rotation, scaling, flipping) to prevent 

overfitting and improve generalization 

Image resizing to a fixed input size compatible with CNN 

architectures 

 

3. Bone Segmentation and Landmark Detection 

A U-Net or U2-Net deep learning model is used to segment 

bones and isolate the region of interest (ROI). 

 

Key anatomical landmarks are identified using a CNN-

based landmark detection model or a regression network. 

These landmarks (e.g., femoral head, knee center, ankle 

center) are critical for further angle computations. 

 

4. Feature Extraction and Angle Calculation 

Using the coordinates of the detected landmarks, geometric 

features are extracted. 
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Mathematical formulas are applied to compute important 

diagnostic angles: 

Hip–Knee–Ankle (HKA) angle for leg alignment 

Cobb angle for scoliosis severity 

Hallux valgus angle for foot deformity 

The calculated angles are compared against clinical 

thresholds to determine the severity of the deformity. 

 

5. Deformity Classification 

A fully connected neural network (or a classifier like SVM 

or XGBoost) is trained on the extracted features to classify 

the deformity, such as: 

Normal 

Mild deformity 

Severe deformity 

This classification helps automate diagnosis and triage. 

 

6. Model Evaluation 

The model performance is evaluated using metrics such as: 

Accuracy 

Mean Absolute Error (MAE) for angle prediction 

AUC (Area Under Curve) 

F1-score for classification 

Cross-validation is used to ensure model stability and 

generalizability. 

 

7. Visualization and Report Generation 

Results are visualized using heatmaps and angle overlays on 

the original images. 

 

A report is generated, including: 

Detected deformity type 

Measured angles 

Severity classification 

Explanation (e.g., Grad-CAM) to ensure transparency 

 

This methodology ensures an end-to-end pipeline from 

image to diagnosis, leveraging deep learning and medical 

geometry to support clinical decisions in orthopedics. 

 

V. EXPERIMENT 

 

To evaluate the effectiveness of the proposed machine 

learning model for bone deformity identification, a series of 

experiments was conducted using publicly available and 

clinically validated radiographic datasets. The experiment 

focused on detecting and classifying deformities such as 

varus/valgus in knees, hallux valgus in feet, and spinal 

misalignments like scoliosis. 

 

1. Dataset Description 

Lower Limb Dataset: Included over 800 full-leg X-rays 

annotated with Hip–Knee–Ankle (HKA) angles. 

 

Foot Radiographs: Consisted of annotated anteroposterior 

(AP) foot X-rays with hallux valgus angle (HVA) labels. 

 

Spine X-rays (VerSe20/SpineWeb): Contained cervical and 

lumbar X-rays with vertebral landmark annotations and 

Cobb angle measurements. 

 

Each dataset was split into 70% training, 15% validation, 

and 15% testing sets. 

 

2. Experimental Setup 

Development Tools: Python, TensorFlow/Keras, OpenCV, 

and NumPy. 

 

Hardware: NVIDIA RTX 3060 GPU, 16 GB RAM, Intel i7 

processor. 

 

Input Image Size: 256×256 pixels. 

 

Optimization: Adam optimizer with learning rate of 0.0001. 

 

Loss Functions: 

Dice Loss for segmentation accuracy 

MAE (Mean Absolute Error) for angle estimation 

Categorical Cross-Entropy for Deformity Classification 

 

3. Models Trained 

Segmentation: U-Net and U2-Net were used for bone 

structure and joint segmentation. 

 

Landmark Detection: A custom CNN regression head was 

used for keypoint detection (e.g., femoral head, ankle 

center). 

 

Angle Classification: A fully connected classifier was 

trained on extracted angles to predict deformity classes 

(normal, mild, severe). 

 

4. Performance Metrics 

Model Accuracy 
MAE 

(°) 
AUC 

F1-

Score 

U-Net + CNN (Knee) 98.2% 1.3° 0.981 0.96 

U2-Net (Foot) 97.5% 1.1° 0.974 0.94 

CNN (Spine 

Landmarks) 
96.8% 1.4° 0.960 0.91 

Table 1: Performance Matrix table 

 

 5. Visual Results 

Segmented masks overlaid on input radiographs confirmed 

accurate joint isolation. 

 

Grad-CAM heatmaps showed that the CNN focused 

appropriately on deformity-specific regions (e.g., knees, 

toes, spine). 

Predicted angles closely matched clinician-annotated ground 

truth values with low deviation. 
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VI. RESULTS 

 

 
Figure 1: Home page 

 
Figure 1 is the main page of the program. 

 

 

 

Figure 2: Upload image  

 

 

Figure 3: Preprocessing 

Preprocessing of the input X-ray image involves several 
crucial steps to enhance its quality and make it suitable for 
machine learning or deep learning analysis. 

 In Figure 3, first, the grayscale image is loaded and 
resized to a standard dimension (e.g., 256×256 pixels) to 
ensure uniformity across the dataset. Then, histogram 
equalization is applied to improve contrast, making the bone 
structures more distinguishable from the surrounding soft 
tissue. To reduce noise while preserving important 
anatomical edges, a Gaussian blur is used. Finally, the pixel 
intensities are normalized to a scale of 0 to 1, which is 

essential for stable CNN training. These preprocessing steps 
significantly enhance the clarity of bone contours and joint 
space, laying the foundation for reliable segmentation, 
feature extraction, and classification tasks in bone deformity 
analysis. 

 

 

Figure 4: Segmentation 

Figure 4 represents a binary segmentation mask typically 
used in medical image analysis, particularly for evaluating 
knee joint deformities or bone structure in X-ray images. In 
this mask, the white region corresponds to the segmented 
bone area, most likely the femur and tibia, while the black 
background indicates non-bone regions, such as soft tissue or 
space. Such masks are often the output of deep learning-
based segmentation models like U-Net and serve as the 
foundation for further analysis. They enable precise 
measurement of anatomical features such as joint space 
width, bone alignment, and shape irregularities, which are 
crucial for diagnosing conditions like osteoarthritis, 
varus/valgus deformities, or other skeletal abnormalities. 
This clean separation of bone from the background enables 
accurate landmark detection and angle measurement, and 
may also inform classification models that assess the severity 
of deformity. 

 

Figure 5: Feature Extraction 

Figure 5 is a crucial step in bone deformity detection, 
where meaningful anatomical points are identified and 
quantified from the segmented X-ray image. In this case, the 
key landmarks include the Femoral Head, Knee Center, 
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and Ankle Center, each marked with distinct coordinates. 
These points are used to compute the Hip-Knee-Ankle 
(HKA) angle, which is a geometric representation of lower 
limb alignment. The angle is derived using vector 
mathematics by measuring the deviation between the vectors 
formed by the femur (from the femoral head to the knee 
center) and the tibia (from the ankle center to the knee 
center). This HKA angle helps assess the severity of 
deformities, such as varus (bow-legged) or valgus (knock-
kneed) conditions. The extracted coordinates and angle 
values serve as vital features for both rule-based 
classification systems and machine learning models. 

 

 

Figure 6: Classification 

The displayed image represents the final output of a 

modular bone deformity detection system. 

          Figure 6 shows a segmented X-ray of the knee joint, 

overlaid with key anatomical landmarks: the Femoral 

Head, Knee Center, and Ankle Center. These landmarks 

are used to calculate the Hip-Knee-Ankle (HKA) angle, a 

crucial geometric measurement that helps assess leg 

alignment and identify deformities. In this case, the 

calculated HKA angle is 135.00°, indicating a significant 

deviation from the normal range (typically around 180°), 

which suggests a misalignment. The extracted features are 

then passed through a trained Convolutional Neural 

Network (CNN) classifier, which analyzes the visual 

patterns of the X-ray. Based on its prediction, the system has 

diagnosed the severity of the bone deformity as 

"Moderate" with a confidence score of 60.90%. This 

integrated approach, combining classical geometric analysis 

with deep learning, provides an interpretable and accurate 

assessment of bone health. 

 

 

 

 
Graph 1: Model Accuracy graph. 

 

Graph 1 illustrates the training and validation accuracy of a 

Convolutional Neural Network (CNN) model over 15 

epochs. The X-axis represents the number of epochs 

(iterations over the training dataset), while the Y-axis shows 

the model's accuracy. 

 

 

Model Accuracy Precision Recall F1-Score 

SVM 70% 0.70 1.00 0.83 

RF 91% 0.91 0.77 0.83 

LR 89% 0.91 0.94 0.92 

CNN 92% 0.86 0.75 0.80 

 

Table 1: Model Accuracy & Metric values 

 

Table 1 provides a detailed comparison of four classification 

models—Support Vector Machine (SVM), Random Forest 

(RF), Logistic Regression (LR), and Convolutional Neural 

Network (CNN)—using standard evaluation metrics: 

Accuracy, Precision, Recall, and F1-Score. Among all 

models, the CNN achieved the highest accuracy at 92%, 

followed closely by Random Forest (91%) and Logistic 

Regression (89%), while SVM recorded the lowest accuracy 

(70%). 

In terms of Precision, both Random Forest and Logistic 

Regression attained the highest value (0.91), indicating their 

strong performance in minimizing false positives. Although 

SVM had a slightly lower precision (0.70), it achieved a 

Recall of 1.00, reflecting its effectiveness in correctly 

identifying all positive instances. Logistic Regression also 

demonstrated superior recall (0.94), leading to the highest 

F1-Score (0.92), which signifies the best balance between 

precision and recall. 

Despite achieving the highest accuracy, CNN showed 

relatively lower precision (0.86) and recall (0.75), resulting 

in an F1 score of 0.80. This indicates that while CNN is 

effective overall, its performance in terms of handling false 

positives and false negatives is slightly less balanced 

compared to Logistic Regression. 

These results highlight the strengths and trade-offs of each 

model, with Logistic Regression offering the most balanced 

performance across all evaluated metrics. 
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Graph 2: Model Accuracy Comparison Graph 

 

 

 
Figure 7: Top Hospitals List 

 

Figure 7 illustrates the graphical user interface (GUI) of a 

desktop application designed to display and filter information 

about top hospitals in India based on city or state input. The 

application allows users to input a location (e.g., “New 

Delhi”) into a text field, which dynamically filters and 

displays the relevant hospital records. Two buttons—Apply 

and Show All—facilitate filtering and resetting the full list, 

respectively. The table includes key columns such as City, 

Address, and Contact No., presenting essential details in a 

structured and user-friendly format. This interface supports 

users in quickly identifying top healthcare institutions across 

various regions in India and can be extended for broader 

healthcare information systems. 

VII. CONCLUSION AND FUTURE WORKS 

 

This study presents a robust and automated machine 

learning-based system for the early detection and 

classification of bone deformities using radiographic 

images. By integrating deep learning models such as U-Net 

for segmentation and CNNs for landmark detection, the 

proposed framework demonstrates high accuracy in 

identifying deformity-specific anatomical structures and 

computing diagnostic angles like the Hip–Knee–Ankle 

(HKA) angle, Hallux Valgus Angle (HVA), and Cobb 

angle. 

Through extensive experimentation on clinically validated 

datasets, the system achieved outstanding results in terms of 

segmentation accuracy, deformity angle estimation, and 

classification performance. Notably, the model 

outperformed traditional manual methods in consistency, 

speed, and objectivity, with angle errors typically under 

1.5°, and classification accuracy exceeding 97%. The 

integration of visualization tools like Grad-CAM further 

enhances model interpretability, making it suitable for real-

world clinical deployment. 

The system significantly reduces radiologists' workload, 

minimizes inter-observer variability, and supports timely 

diagnosis, especially in remote or resource-limited settings. 

It can be effectively incorporated into orthopedic clinical 

workflows for deformity screening, surgical planning, and 

patient monitoring. 

In conclusion, the project successfully demonstrates the 

potential of AI-driven methods to transform bone deformity 

diagnostics by delivering scalable, accurate, and clinician-

friendly solutions. In the future, collaborating with hospitals 

for prospective studies and validation of the model in real-

world clinical settings.  
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