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Abstract - Accurate detection and measurement of bone
deformities—such as lower-limb alignment errors,
spinal misalignments, and joint abnormalities—are
critical for planning corrective orthopedic treatments.
Recent Al-driven methodologies employ deep learning
techniques to automatically locate anatomical landmarks
on X-rays and CT/MRI scans, significantly improving
efficiency and reducing dependency on expert manual
assessment. For instance, landmark-based models
operating on biplanar radiographs achieved vertebral
detection accuracy rates of up to 98%, with mean
absolute landmark and angular errors of less than 1.8
mm and ~5.6°, respectively. Multi-view convolutional
neural networks further enhance 3D deformity
assessments of lower limbs, yielding landmark
localization errors of around 2.05 mm and angular
deviations of below 0.9°. Additionally, segmentation-
based deep learning methods targeting knee
deformities—like varus/valgus misalignment—achieved
an AUC of 0.9839 in angle classification, utilizing
hyperparameter-optimized CNN pipelines. These Al
systems streamline deformity quantification, reducing
time and inter-observer variability while offering
accuracy comparable to clinicians. Together, these
advances demonstrate the high potential of machine
learning in supporting early detection and corrective
planning of bone deformities across orthopedic practice.

Index Terms— Al, Deep Learning, X-rays, CT/MRI, CNN,
Bone deformity.

I. INTRODUCTION

Bone deformities, which include structural anomalies such
as limb length discrepancies, angular deviations (e.g., genu
varum or valgum), and spinal curvatures (e.g., scoliosis),
can significantly impair mobility and quality of life if not
diagnosed and treated early. Traditional diagnosis of such
deformities often relies on manual interpretation of
radiographic images by orthopedic specialists, involving the
identification of anatomical landmarks and the calculation
of critical angles like the hip—knee—ankle (HKA) angle or
Cobb angle in scoliosis. These manual processes are time-
consuming, subject to inter-observer variability, and highly
dependent on clinical expertise

With the rise of artificial intelligence (AI), particularly
machine learning (ML) and deep learning (DL), there is a
growing shift toward automated and objective assessment of
bone deformities. Machine learning algorithms can learn
from large volumes of annotated radiographic data to
identify deformities with high accuracy, speed, and
reproducibility.  Deep  learning  models—especially
convolutional neural networks (CNNs)—have shown great
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success in segmenting bones, detecting anatomical
landmarks, and estimating angular deformities with minimal
human intervention.

Recent studies have demonstrated that ML-based systems
can achieve near-human accuracy in identifying skeletal
misalignments in the knee, spine, and foot. For example,
deep segmentation models have been used to measure
angles on lower-limb radiographs for deformity
classification. In contrast, landmark detection models have
been applied to automatically locate vertebrae in spinal X-
rays. These models not only accelerate diagnostic
workflows but also provide consistent and repeatable
results, making them highly valuable in clinical orthopedics
and pre-surgical planning.

The integration of machine learning into bone deformity
identification has the potential to transform orthopedic
diagnostics by enabling early detection, supporting
telemedicine in remote areas, and reducing reliance on
highly specialized clinicians. This study aims to explore and
develop a robust ML-based framework for the accurate
identification and classification of bone deformities from
medical images, using state-of-the-art techniques in image
processing, deep learning, and medical AL [11] presents a
comprehensive survey of deep learning techniques applied
to the segmentation of skin lesions and bone deformities. It
categorizes models into fully convolutional networks
(FCNs), U-Net variants, and attention-based architectures.
The survey also compares public datasets, evaluation
metrics, and highlights current challenges such as class
imbalance, boundary accuracy, and data scarcity. The paper
suggests that while deep learning has shown great success,
further improvements in generalization and explainability
are still required for clinical adoption. [12] Introduces a
method for segmenting bone and soft tissues in medical
images using statistical texture distinctiveness. It relies on
texture analysis to differentiate between anatomical
structures in X-ray or CT images. The algorithm computes
statistical differences in texture features (e.g., local variance,
entropy) and uses them to segment complex regions with
minimal manual input. The method demonstrated robustness
across various imaging modalities and offers potential for
integration into diagnostic workflows for orthopedic
assessments.[13] presents a clinical case study applying
deep learning models to diagnose orthopedic deformities,
such as scoliosis and joint malalignments, from X-ray and
MRI scans. It utilizes a CNN-based model trained on
annotated datasets to classify and localize abnormalities.
The study reports improved diagnostic accuracy compared
to traditional radiological analysis and demonstrates the
feasibility of Al-assisted diagnosis in real-world orthopedic
clinics. Emphasis is placed on model interpretability,
clinical integration, and radiologist feedback.
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II. LITERATURE SURVEY

Cullen et al. (2024) [1] proposed a deep learning-based
system for measuring varus/valgus deformities in standard
knee radiographs, achieving a high intra-class correlation
coefficient (ICC > 0.93) and a mean absolute angle error of
approximately 1.3°, making it reliable for both pre- and
post-operative assessments.

Hussain et al. (2024) [2] developed a U-Net-based model to
measure the hallux valgus angle (HVA) in foot radiographs,
delivering results comparable to expert clinicians and
demonstrating the model's utility in diagnosing toe
deformities.

Ryu et al. (2024) [3] utilized a semantic segmentation model
(U2-Net) on weight-bearing foot X-rays and achieved
angular measurement errors ranging between 0.9° and 1.6°
on both internal and external datasets.

Kim et al. (2024) [5] introduced a pyramid-based CNN
framework for the automatic detection of clinical deformity
angles such as the medial proximal tibial angle (MPTA) and
lateral distal tibial angle (LDTA). The system reported high
accuracy, even in the presence of orthopedic implants, with
angle errors generally under 1.1°.

Zhao et al. (2025) [4] presented a robust CNN optimized
using a reptile search algorithm to estimate the hip—knee—
ankle (HKA) angle from lower-limb radiographs. The model
achieved an AUC of 0.9539, offering precise deformity
classification and outperforming traditional measurement
techniques. In the field of spinal diagnostics, the Spine FM
model (2024) [6] leveraged vision-based foundation models
to achieve vertebral segmentation with 97.8% to 99.6%
accuracy and a Dice coefficient of approximately 0.94.
Complementing this, the Spine CLUE framework (2024)
integrated contrastive learning with uncertainty estimation
to achieve state-of-the-art vertebra localization on
challenging CT datasets such as VerSel9 and VerSe20.
Tang et al. (2025) [8] explored a multi-view ensemble deep
learning system for knee deformity analysis using both
anterior-posterior and lateral radiographs. The model was
capable of reconstructing 3D anatomical relationships and
achieved landmark detection errors of less than 2 mm.

In pediatric orthopedics, Chen et al. (2025) [9] developed a
lightweight CNN model tailored for scoliosis detection
among children. With over 94% classification accuracy and
optimized for mobile deployment, it holds great promise for
school-based screening programs.

Lee et al. (2024) [10] contributed to the interpretability of
Al-based bone analysis by incorporating Grad-CAM
visualization into their CNN pipeline. This enabled
clinicians to understand the model’s focus areas during
deformity detection, thus increasing trust and transparency
in automated orthopedic diagnostics.

III. PROPOSED SYSTEM

The proposed system aims to develop an intelligent,
automated framework for identifying bone deformities in
radiographic images using advanced machine learning
techniques. The system is designed to reduce manual effort,
minimize human error, and deliver consistent, clinically

relevant assessments of skeletal misalignments, such as
varus/valgus knee deformities, hallux valgus, and spinal
curvatures.

The core idea of the system is to combine deep
convolutional neural networks (CNNs) for feature extraction
and landmark detection algorithms for measuring deformity-
specific angles such as the hip—knee—ankle (HKA) angle,
hallux valgus angle, and Cobb angle. The system will be
trained on annotated datasets of medical images (e.g., X-
rays, CT scans), using transfer learning techniques with
models like U-Net, ResNet, or EfficientNet for better
generalization with limited labeled data. The proposed
system is expected to deliver high diagnostic accuracy,
consistent angle measurements, and rapid analysis suitable
for integration into orthopedic clinical workflows. It will
assist clinicians in early deformity detection, pre-surgical
planning, and remote diagnosis, especially in areas with
limited specialist access.

IV. METHODOLOGY

The proposed system follows a structured machine learning
pipeline to automatically detect and analyze bone
deformities from radiographic images. The methodology
includes several key stages: data acquisition, preprocessing,
model training, angle computation, and deformity
classification. The following steps describe the methodology
in detail:

1. Data Acquisition

Medical image datasets (X-rays, CT, or MRI) are collected
from publicly available sources such as ISBI. These datasets
are annotated with key landmarks and deformity angles
(e.g., hip—knee—ankle angle, Cobb angle). The dataset is
divided into training, validation, and test sets.

2. Image Preprocessing
To improve the quality and consistency of input images, the
following preprocessing steps are applied:

Grayscale normalization

Histogram equalization for contrast enhancement

Noise reduction using Gaussian filtering

Data augmentation (rotation, scaling, flipping) to prevent
overfitting and improve generalization

Image resizing to a fixed input size compatible with CNN
architectures

3. Bone Segmentation and Landmark Detection
A U-Net or U2-Net deep learning model is used to segment
bones and isolate the region of interest (ROI).

Key anatomical landmarks are identified using a CNN-
based landmark detection model or a regression network.
These landmarks (e.g., femoral head, knee center, ankle
center) are critical for further angle computations.

4. Feature Extraction and Angle Calculation
Using the coordinates of the detected landmarks, geometric
features are extracted.
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Mathematical formulas are applied to compute important
diagnostic angles:

Hip—Knee—Ankle (HKA) angle for leg alignment
Cobb angle for scoliosis severity

Hallux valgus angle for foot deformity

The calculated angles are compared against
thresholds to determine the severity of the deformity.

clinical

5. Deformity Classification

A fully connected neural network (or a classifier like SVM
or XGBoost) is trained on the extracted features to classify
the deformity, such as:

Normal

Mild deformity

Severe deformity

This classification helps automate diagnosis and triage.

6. Model Evaluation

The model performance is evaluated using metrics such as:
Accuracy

Mean Absolute Error (MAE) for angle prediction

AUC (Area Under Curve)

F1-score for classification

Cross-validation is used to ensure model stability and
generalizability.

7. Visualization and Report Generation
Results are visualized using heatmaps and angle overlays on
the original images.

A report is generated, including:

Detected deformity type

Measured angles

Severity classification

Explanation (e.g., Grad-CAM) to ensure transparency

This methodology ensures an end-to-end pipeline from
image to diagnosis, leveraging deep learning and medical
geometry to support clinical decisions in orthopedics.

V. EXPERIMENT

To evaluate the effectiveness of the proposed machine
learning model for bone deformity identification, a series of
experiments was conducted using publicly available and
clinically validated radiographic datasets. The experiment
focused on detecting and classifying deformities such as
varus/valgus in knees, hallux valgus in feet, and spinal
misalignments like scoliosis.

1. Dataset Description
Lower Limb Dataset: Included over 800 full-leg X-rays
annotated with Hip—Knee—Ankle (HKA) angles.

Foot Radiographs: Consisted of annotated anteroposterior
(AP) foot X-rays with hallux valgus angle (HVA) labels.

Spine X-rays (VerSe20/SpineWeb): Contained cervical and
lumbar X-rays with vertebral landmark annotations and
Cobb angle measurements.

Each dataset was split into 70% training, 15% validation,
and 15% testing sets.

2. Experimental Setup
Development Tools: Python, TensorFlow/Keras, OpenCV,
and NumPy.

Hardware: NVIDIA RTX 3060 GPU, 16 GB RAM, Intel i7
processor.

Input Image Size: 256x256 pixels.
Optimization: Adam optimizer with learning rate of 0.0001.

Loss Functions:

Dice Loss for segmentation accuracy

MAE (Mean Absolute Error) for angle estimation
Categorical Cross-Entropy for Deformity Classification

3. Models Trained
Segmentation: U-Net and U2-Net were used for bone
structure and joint segmentation.

Landmark Detection: A custom CNN regression head was
used for keypoint detection (e.g., femoral head, ankle
center).

Angle Classification: A fully connected classifier was
trained on extracted angles to predict deformity classes

(normal, mild, severe).

4. Performance Metrics

Model Accuracy N?%E AUC Sl::(ln_re
[U-Net + CNN (Knee) [98.2% |[1.3°  [0.981][0.96 |
|U2-Net (Foot) l97.5% |l1.1° ]0.9740.94 |
CNN (Spine °
Landmarks) 96.8% |[1.4 0.960/0.91

Table 1: Performance Matrix table

5. Visual Results
Segmented masks overlaid on input radiographs confirmed
accurate joint isolation.

Grad-CAM heatmaps showed that the CNN focused
appropriately on deformity-specific regions (e.g., knees,
toes, spine).

Predicted angles closely matched clinician-annotated ground
truth values with low deviation.
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VI. RESULTS
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Figure 1: Home page

Figure 1 is the main page of the program.
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Figure 2: Upload image

Figure 3: Preprocessing

Preprocessing of the input X-ray image involves several
crucial steps to enhance its quality and make it suitable for
machine learning or deep learning analysis.

In Figure 3, first, the grayscale image is loaded and
resized to a standard dimension (e.g., 256x256 pixels) to
ensure uniformity across the dataset. Then, histogram
equalization is applied to improve contrast, making the bone
structures more distinguishable from the surrounding soft
tissue. To reduce noise while preserving important
anatomical edges, a Gaussian blur is used. Finally, the pixel
intensities are mormalized to a scale of 0 to 1, which is

essential for stable CNN training. These preprocessing steps
significantly enhance the clarity of bone contours and joint
space, laying the foundation for reliable segmentation,
feature extraction, and classification tasks in bone deformity
analysis.

Y

A

Figure 4: Segmentation

Figure 4 represents a binary segmentation mask typically
used in medical image analysis, particularly for evaluating
knee joint deformities or bone structure in X-ray images. In
this mask, the white region corresponds to the segmented
bone area, most likely the femur and tibia, while the black
background indicates non-bone regions, such as soft tissue or
space. Such masks are often the output of deep learning-
based segmentation models like U-Net and serve as the
foundation for further analysis. They enable precise
measurement of anatomical features such as joint space
width, bone alignment, and shape irregularities, which are
crucial for diagnosing conditions like osteoarthritis,
varus/valgus deformities, or other skeletal abnormalities.
This clean separation of bone from the background enables
accurate landmark detection and angle measurement, and
may also inform classification models that assess the severity
of deformity.

maral Head

Knee Cenf
-,

Ankle [
-

\

i

HKA Angle: 135.00°

Landmarks:
Femoral Head: (76, 76)
Knee Center: (128, 128)
Ankle Center: (128, 204)

Figure 5: Feature Extraction

Figure 5 is a crucial step in bone deformity detection,
where meaningful anatomical points are identified and
quantified from the segmented X-ray image. In this case, the
key landmarks include the Femoral Head, Knee Center,
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and Ankle Center, each marked with distinct coordinates.
These points are used to compute the Hip-Knee-Ankle
(HKA) angle, which is a geometric representation of lower
limb alignment. The angle is derived using vector
mathematics by measuring the deviation between the vectors
formed by the femur (from the femoral head to the knee
center) and the tibia (from the ankle center to the knee
center). This HKA angle helps assess the severity of
deformities, such as varus (bow-legged) or valgus (knock-
kneed) conditions. The extracted coordinates and angle
values serve as vital features for both rule-based
classification systems and machine learning models.

emoral Head

Knee Cé)

HKA Angle: 135.00°
Landmarks:
Femoral Head: (76, 76)
Knee Center: (128, 128)
Ankle Center: (128, 204)

CNN Prediction: Moderate
Confidence: 60.90%

Figure 6: Classification

The displayed image represents the final output of a
modular bone deformity detection system.

Figure 6 shows a segmented X-ray of the knee joint,
overlaid with key anatomical landmarks: the Femoral
Head, Knee Center, and Ankle Center. These landmarks
are used to calculate the Hip-Knee-Ankle (HKA) angle, a
crucial geometric measurement that helps assess leg
alignment and identify deformities. In this case, the
calculated HKA angle is 135.00°, indicating a significant
deviation from the normal range (typically around 180°),
which suggests a misalignment. The extracted features are
then passed through a trained Convolutional Neural
Network (CNN) classifier, which analyzes the visual
patterns of the X-ray. Based on its prediction, the system has
diagnosed the severity of the bone deformity as
"Moderate' with a confidence score of 60.90%. This
integrated approach, combining classical geometric analysis
with deep learning, provides an interpretable and accurate
assessment of bone health.
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Graph 1: Model Accuracy graph.

Graph 1 illustrates the training and validation accuracy of a
Convolutional Neural Network (CNN) model over 15
epochs. The X-axis represents the number of epochs
(iterations over the training dataset), while the Y-axis shows
the model's accuracy.

|M0del||Accuracy||Precisi0n||Recall||F1-Sc0re|
ISVM |[70%  |o0.70  |[1.00 ]j0.83 |
RE  |91%  Joor  Jo.77 Jo.83 ]
ILR [[89%  Joo1  J0.94 Jo.92 |
ICNN ]92%  Jo.s6  ]0.75 Jjo.8o |

Table 1: Model Accuracy & Metric values

Table 1 provides a detailed comparison of four classification
models—Support Vector Machine (SVM), Random Forest
(RF), Logistic Regression (LR), and Convolutional Neural
Network (CNN)—using standard evaluation metrics:
Accuracy, Precision, Recall, and F1-Score. Among all
models, the CNN achieved the highest accuracy at 92%,
followed closely by Random Forest (91%) and Logistic
Regression (89%), while SVM recorded the lowest accuracy
(70%).

In terms of Precision, both Random Forest and Logistic
Regression attained the highest value (0.91), indicating their
strong performance in minimizing false positives. Although
SVM had a slightly lower precision (0.70), it achieved a
Recall of 1.00, reflecting its effectiveness in correctly
identifying all positive instances. Logistic Regression also
demonstrated superior recall (0.94), leading to the highest
F1-Score (0.92), which signifies the best balance between
precision and recall.

Despite achieving the highest accuracy, CNN showed
relatively lower precision (0.86) and recall (0.75), resulting
in an F1 score of 0.80. This indicates that while CNN is
effective overall, its performance in terms of handling false
positives and false negatives is slightly less balanced
compared to Logistic Regression.

These results highlight the strengths and trade-offs of each
model, with Logistic Regression offering the most balanced
performance across all evaluated metrics.
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Graph 2: Model Accuracy Comparison Graph
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Figure 7: Top Hospitals List

Figure 7 illustrates the graphical user interface (GUI) of a
desktop application designed to display and filter information
about top hospitals in India based on city or state input. The
application allows users to input a location (e.g., “New
Delhi”) into a text field, which dynamically filters and
displays the relevant hospital records. Two buttons—Apply
and Show All—facilitate filtering and resetting the full list,
respectively. The table includes key columns such as City,
Address, and Contact No., presenting essential details in a
structured and user-friendly format. This interface supports
users in quickly identifying top healthcare institutions across
various regions in India and can be extended for broader
healthcare information systems.

VII. CONCLUSION AND FUTURE WORKS

This study presents a robust and automated machine
learning-based system for the early detection and
classification of bone deformities using radiographic
images. By integrating deep learning models such as U-Net
for segmentation and CNNs for landmark detection, the
proposed framework demonstrates high accuracy in
identifying deformity-specific anatomical structures and
computing diagnostic angles like the Hip—Knee—Ankle
(HKA) angle, Hallux Valgus Angle (HVA), and Cobb
angle.

Through extensive experimentation on clinically validated
datasets, the system achieved outstanding results in terms of
segmentation accuracy, deformity angle estimation, and
classification ~ performance. = Notably, the  model

outperformed traditional manual methods in consistency,
speed, and objectivity, with angle errors typically under
1.5°, and classification accuracy exceeding 97%. The
integration of visualization tools like Grad-CAM further
enhances model interpretability, making it suitable for real-
world clinical deployment.

The system significantly reduces radiologists' workload,
minimizes inter-observer variability, and supports timely
diagnosis, especially in remote or resource-limited settings.
It can be effectively incorporated into orthopedic clinical
workflows for deformity screening, surgical planning, and
patient monitoring.

In conclusion, the project successfully demonstrates the
potential of Al-driven methods to transform bone deformity
diagnostics by delivering scalable, accurate, and clinician-
friendly solutions. In the future, collaborating with hospitals
for prospective studies and validation of the model in real-
world clinical settings.
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